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ABSTRACT

This research 15 concerned with the asymptotic properties of feedback sys=-.
tems containing uncertain parameters and subjected to stochastic pertur-
bations. The approach is functional analytic in flavor and thereby avoids
the use of Markov techniques and auxillary Lyapunov functionals character-
istic of the existing work in this area. The results are given for the
probability distributions of the accessible signals in the system and are
proved using the Prohorov theory of the convergenceé of measures and some
recent work on the preservation of convergence under operations. For gen-
eral nonlinear systems a result similar to the Small Loop-Gain Theorem of
deterministic stability theory is given that is sufficient to guarantee
that totally bounded stochastic inputs give rise to totally bounded out-
 puts. Here boundedness 1is a property of the induced distributions of the
signals and not the usual notion of boundedness in norm. For the special
class of feedback systems formed by the cascade of a white noise, a sec-
tor nonlinearity, and a convolution operator conditions are given to in-
sure the total boundedness of the overall feedback system. These condi-
tions are expressed in terms of the Fourier transform of the convolution
kernel, the sector parameters of the nonlinearity, and the mean and the
variance parameters of the noise. Their form is reminiscient of the fam=-
iliar Nyquist Criterion and the Cirecle Theorem for deterministic systems.
Applications of the criteria to analyze rounding errors in machine com- .
putations and to study control systems containing human operators are
suggeated. , . o ,

THESIS SUPERVISOR: Sanjoy K. Mitter
TITLE: Associate Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

1.1 Stability of Dynamical Systems:

The study of dynamical systems has evolved along tuo paths essentially
distinct in mathematical formulation. The first,'which is,based.in the"
theory of differential equations, uses the concept“of'a dynamical system

as a‘semigroup of states and thus has an algebraic flavor. For autonomous
systems (no forcing function) this approach was already well formulated
fifty years ago [8]. For physical systems accurately described by a finite
dimensional set of states which have interpertations as physical variables
(electrical voltages and currents,.for example) powerful'end.precise con- .
clusionsvmay be drawn about the,properties of the system. ﬁoWever,‘when
the physical system admits no accuratelfinite dimensional model, the
.general state theory is at this time rather formal and, except in specific
cases, the precision attained in the finite dimensional case is lost in
technical difficulties.

The use of dynamical systems as models for control processes has»led
to a second method of analysis based simply on the input-output properties
of the: system. In this formulation the input and output of a system ‘are’
considered.as points in a,set of functions and the,system_itself as an
operator on'this function apace. Thus, functional analysis replaces tne
theory of différential eduations as the source of analytic tools. Proolems
associated witn selecting a suitable representation‘tor the internal
structure of a dynamical element are avoided and large classes of complex

» systems may be treated qualitatively with simple techniques.



Originating only within the past decade, the operator theoretic
treatment of systems has been developed only'for'the.essiest problem
associated with feedback systems-stability. Restricting the set of inputs
to be perturbations of the system, that is bounded in ‘some sense, a sys-
tem is defined to be input-output’ stsble if bounded inputs are mapped
into bounded outputs or equivalently 1f the system 1is represented as a
bounded operstor. In this context boundedness of a signsl may mean ‘the
usual boundedness in amplitude or in some more sophisticated'sense suCh
as total energy or power. In the state theory stability is defined as
asjmptotic convergence of the system state to the zero state.'Perturbations
are introducted by initial displacements of the stete from zero. For those -
systems permitting & simple state representation it is usually easy to .
commute between the concepts of input-output stability and stste stabilityv
[631. o

Stability theory in the state space setting relies on the use'of
Lyapunov functionals, certain auxillary functions of the state. These
functionals completely specify the asymptotic behavior of the state when
they can be found and determined to be positive definite and have negative
definite time derivatives in a neighborhood of an equilibrium state..As
there at present exists no constructive method of genersting Lyapunov-
functions, the general theory remains in a static condition st present.

By contrsst the operator theoretic spprosch to'stsbility casts the
problem into a uery active area of'mathematical resesrch-the invertibility
of operators. To see that this is the case,_consider'the equation

| x+ Kox = u | . B

as the description of a feedback system. Here K and G represent generally



néhlinear eleﬁents'in the fgedbéck loop, u is a petturbation input, ahd_
thé.output x is to be studied, If u is an element.éf sdme normed, linear
space of functions, then x 1is béunded (an element of tﬁat space) if
i + KG has a bounded inverse on that space. Hencé, the stability question
may be resolvea using the mathematical theofieé relating to the_inQert—
ibility of'opétators on normed or.metric spaces. Indeed:many new as well
as some familiét results have been developed using spectral theofy and
Banach algebras, two of the basic tools in invertibility studies.

It 1§ the pfesence of an active andeell-founded:theory for the anal-
ysis of deterministic systems in operator form that motivates this research
which attempts to extend Ehe théory-in such a way as.to preserve its
essential elements and yet account for Stocﬁastic signals and uncertain

-parametérs in the analysis.

1.2 Stochastic Systems:

Efforts to model 1n¢tea§ingly complex coﬁ;rol systems have led tb the
study of some systems which simply cannot be médelled accurately with
petfect cert#int&. Uncertaiﬁties-are introduced either by phenomena that
are 8o complic#ted’as’to defy reduction to a tracfable'deterministic
modei or are in essence random. As an examﬁle of the former consider the
ééqeration}éf roundoff errors in a digital coméﬁtation. Restricted by.
finite register size the machine must of necessity round-off stored var-
iéb;es at each stage in a'computation. Being a design choice the rounding
mechanism is not uncertain, and in any given computation of limited com-
plexity the rounding errors coqld be monitored exactly. However, in a.

computation of even moderate complexity the register size will be exceeded



at.many poihts_in the caléu&étion and monitoring the errors may become

a more formidable tﬁsk than the original computation; In such a case it

is reasonable t§ assume that the evolution of roun&ing'etrors is a statis~-
tical process in order to appraise their average magnitude. -

" As an examplé of the introduction of essentialiy>random phgnomeha into
a physical experiment cohéidef the problém of maintaining.the orientation
of a rigid body in orbit around the earth. Primary sources of error are |
seﬁsOrAerrofé and propulsion jet errors (in firing and cutoff times). A
secondary source of error,but a very important one.in vefy pfecise appli-
cations; is the fluctu#tions in the earth's gra§1tationa1 field along the
path oi the orbit dﬂé to surface irregularitieé and local vari;tions in
the density'of the earﬁh._BecauSe thé sensor errors make an exa;t_deter;
mination of ppsition iﬁpossible no model apart from a statistical one can
accuratély (within the hsually rigid specifications-of'these experiments)
5c¢ount for other than the most prominant aberrations. This problem reduces
to design of a feedback control law capable of éteéisélyiorienting a
gatéllite in the presence of essentially random perturbations. Moreover,
the control}ers (combining sensors and propulsion units)<ar¢ themselves
subject £0'sto¢ha9t1c erfors that cannot be determin;stically approximatéd
within the tolerances'fixed for these projects. I£ is thefefore'appfo;
priate in a generdl analysis of systems subjected'to'uncertainties_tq’con—
sider not only random exéetnal perturbations but to permit random paraﬁete:
variations as Qell. |

One of tﬁe majotvproblems faced at the outset quan aﬁaiysis'of a

stochastic system is to determine accurate érobability distributions for
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the quantities considered as random in the experiment In general some
method of hypothesis testing must be applied to the available data and
distributions deduced from this procedure. Although the possibility of
severai empirical distributions is permitted in the'definitions of a.
stochastic system invsectiou 3.1 below,‘in the major portions of the
analyéis to follow.it 1s assumed that‘the process of likelihood test-
ing has been completed and that an optimal distribution has been selected.
For an interesting and important alternate approach for optimal control
problems see.the papers and thesis of Witsenhausen [67],[68],:and [69].
Following,the pstternvgbserved in deterministic systems theory, the
first problem to be'considered for stochastic systems was stability. More-
over, tne framework was that of a state space forﬁmlat_ion using Lyapunov
like techniques. The reasons in both cases were compelling. First, problems
like optimal control of stochastic systems mnst proceed in two intimately
connected steps. Because the state of the system in most cases may be
observed only in the presence of uncertainties, it must first be estimated.
Only then may optimal'controls Se selected. See for instance.the Vork of
Kushner [48], Wonham [70], Fleming [24],[25], and Benes [3],[4] for dis-
cussions of the problems srising from restricted information on the state.
The reason for studying stochastic systems with a.stste realization
is motivated by the powerful and compiehensive mathematical apparatus
available for the analysis of Markov processes (see for instance'bynkin
[{19]). Assuming no more tnan causality, anyvsystem nay be shown to have s
Markovian state decomposition (seeIWillems [63] for.a similar theorem

which may be easily eXtended to permit stochastic variableS), and for those
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systems.with a finite dimensional étate space the analytic theory of
Markov processes combined Qith the theory of stochastic differéntial equa-
ﬁions éoﬁpletely determines the system behavior. Usiﬁg potential functions
of the state (like Lyapunov functionals), the stability of a stochastic
systgm with finite dimensional state may be completely déterﬁined. This
ptogram is developed éompteheﬁsively in K#shner's book t48].

However, in contrast to the deterministic case:theré-is anvgry.réal-
confusion 6ver the meaﬁing of stabilify in a stochastic systém. The con-
fusion stemé largely from the numerous distinct varieties of ﬁrobabilistic
convergence available. Thus, almost sure convergence, convergence in nth
moment, convetgenée in probability and others have been used to study the
asymptotic properties of perturbed stochastic systems. However, for systems
defined by stochastic differential equations it is str&ight forward to
commute between these equations for the trajeCtotieé (samples) of.the
signals in the system and the Chapmap-Kolmogorov ééuatioﬁs for the distri-
butions of the state and the Fokker-Planck equation for its density function
(see Ito [40]).

By examining the asymptotic properies of the solution of the Fokker-
Planck equation,those of the state may be cpmpletely determ;ned. It isb
4in fact entirely appropriate to regard the density'functipn as the state
of thelgyétem and to describe the behavior of thé system in terms of its
evolution. In this manner Markovian stochastic systems fOrm.an important
class of diétfibuted parameter systems (systems whose state-satisfies a
partial differential equatibn)-a class soméwhat ﬁoré amenable to analysis
than most becauge of its special nature (particulariy the boundary conditions)

and the additional interpertation afforded-by-pfObabiiistic considerations
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and the differehtial equation representation. Important work within this

interpertation has been dome by‘Kushner [47], Dym [17], Elliotj[22], I1'in
and Khas' minskii [38] on stability and Fleming [25] on control.
I P |

In the setting provided by a4 state realization of a stochastic system

|
the natural way’ to examine the asymptotic prOperties of the state is to

introduce Lyapunov functionals ‘of the state and consider their properties.
! |
This has been éhe approach adopted in almost all of the references men-
I
tioned above. Because of tertatn relationships between Markov processes

and potential theory (Meyer [51], Hunt {[37], Doob [13]) which seem to

‘ account for the restrictions imposed on Lyapunov functionals, the subject
is deserving of further study. ‘For example stochastic Lyapunov functions
were observed by Kushner [49] and Bucy [10] to be positive supermartingales
[51]. However, a supernartingale is a potential subject to_certain restric-
tions [51]. SeelDynkin;[ZO] for a discussion of the position~of harmonic
functions and ootentials'in the analytic theory oflMarkov nrocesses and
comments on the construction of harmonic functions for a. . process.

What one hopes would come of an investigation of these relationships
is a procedure for generating Lyapunov functionals for interesting systems.
At present the obstacle encountered in the deterministichyapunov theory -
is present‘in the stochastic setting. thatiis, there exists no systematic
method in general of constructiné the functionals. Moreover, in specific
cases the construction process‘is far more difficult in the 1atter case
(stochastic systems) because of certain technical aspects of the“Markovian' A
structure [é8]. For instance deterministic Lyapunov functions.must satisfy

a first order partial differential inequality constraining the time der-

ivative of the functional to be negative definite. In the stochastic case
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this inequality involves a second order Opefgtor [48,p.39].
| Clearlyban.alternative approach for the analysis of the asymptotic
' properties of stochastic sfsteme is desireable. The_development of such
anAaltetnetive along the lines of the operetdr theoretic stability theory
is the subjeet of.this.research.

Continuing the analogy-with the deterministic theoty it would seem
desireable to hgve available a kind of "probabilistic functional analysis"
so that the input-output results of the deterministic theory may be easily
rederived in a probabilistic setting. Sueh a uathematicalvtheory is avail-
able, due largely to a group of Czechqsiovak mathematicians headed by
Spacek and Hans [31], [32], [33]. The concepts of randem operators eque-
tions defined in those papers are presented herebin section 2.3 and used
in section 3.1 to prove some moment bounds for the signals {n a general
stochastic system.'lt is important to note that these bounds are obtained
for signals which need not be Markov.ptecessee; ;

However, it is on1y>in combiuation with anothe: recentvéai1e¢£10nudf
work in the general theory of pruBability that this formulation of a
stochastic system as a random operator is able to.field reeulte in terms
of the distributions of the processes involved. This work iszconcerned
with»topologies for random processes. | |

Though introduced by Kolmogorov over thirty years ago, the study of the
convergence of probability distributions has only tecently returned to
popularity. The papers of Prohorov [53] and Skorokhod [56] in 1956 were

instrumental in generating this revival of interest, Since that time the

study of topologies for random ptocesses has.evolved in a series of papers
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summarized and extended in the books of Billingsly f7], Parthasarathy [52],
and Topsde [60]. The basic ideas are the following: for any mettic spaee
(X,d) let PM(X) be the set of probsbility measures'oilx, then PM(X) may be “

regarded as a subset of the dual space of BC(X), the bounded, continuous
functionals on X [16]. A natural weak topology is thenrinduced on PM(X),
and it is this.tOpolngf that is suitable fer determining‘tne'distributions
of functions of a random process (see section 3.1 for further‘motivational
discussions of this point and [29, Chapter IX]).

A key point in the amalyis of convergence of distributions is a des-
cription of the compact subsets of PM(X). Under certain conditions on the
basic spnce X a set of distributipns isvtelatively sequentiaily comnact
(has sequentially compact:closure) if and only if tnere exists a compact
subset of X on which the distributions are concentrated. That is, let

A c PM(X) be the subset under consideration, then p 1is relatively
compact if. for every o ¢ (0,1) there existsva compact ;gubset- K(g) of X
such that u[K(oD] >1 - qfor every y e A . If X is a space of functions,
suitably metrized, the result says that the distributions of the stochastic
process taking'its values in this set of functions are reiatively compact
if and only if the values of the process are in a.cempact'set alnost
surely. This recurrence condition is familiar in ergodic theory and in a
sense indicates the possibility of interpertations in that setting.

By assuming X to be the space of continuous functions or piecewise
continuous functions, the compact subsets of X mey.be'eaSily characterized.
Sufficienttconditions nay then be established to assure relative compact-’

ness of a set of distributions defined on X. These are summarized in sec-

tion 2.4 for continuous functions and in section 3.3 for plecewise
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continuous functions. These.conditions are used in sections 3.2 énd 3.3
to prove that feedback systems subjected to inputs wiﬁh relativgly com-
pact distributions give rise to outputs which also have felatively com-
pac; distributibns. In section 3.4 these results are used'fo analysevthe
behavior of syﬁtems described by stochaétic differential équations sub-
jected to 1nputi§rocesses'in this class.

‘Implicit in these proofs (3.2 and 3.3) and explicit in section 3.1
»,13 the transfqrm&tion of weakly convergent sequences of diéttibutions by
6p¢tatot8. That 13; a key point in the analysis is contained in the’queétion:
if a convergent sequeﬂée of distributions is mapped by an operator (in some
weli—defined manne:)_intq another sequence uﬁdér what conditions on the
AOperatbr is the lat;er,éequence convétgent as wel@? Finding these con¢itions
forms the hearﬁ bf the arguments in Chapter 3. The general results tha;-
indicate the line of proof were devélbped by Bi}lingsly {7] and Topsge [61]
.among others. Tﬁesé conditions are essentialiy confinuity 6f the operator
on the underlying space’k; and in this Sense'reléte back to the-qpetatot
stability theory of ﬁetermiﬂisticvsystems where continuity_of'the systeﬁ
as a map'on a_function space is a centtal“coh§ept qf stability.‘it is
further in this way ,'since thg fegdbaqk‘equation defines thg variable of -
interest impl#qiﬁly, that the mathematical theory rélating to invertibility
of opetafors is once again identified #é a crucial aspect,of the frame-
work for the analysis df ﬁhe aé&hp;otic proﬁerties’of'sysiéms,in'thié

instance stochastic in nature.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES AND BACKGROUND MATERIAL

2.1 Rema;ks and Some Nét#tion:

The fufpose of this chapter is to recall some of the baéiC'
notions iﬂ»the~operator theoretic treatment of feedbéék-systems
and to suﬁmarize those aspects of the theory of the convergence
of probability measures used in Chapter 3. Although the summaries
here are rather concise, appropriate references are given where more
thorough freatments may be found. As-used here, only thé most basic
results fgom each of these theorses is required and iﬁ this sense
the backgfouhd'matérial necessary for the derivétidné in Chapter 3
is minima%. The only new results in_this chapter are a modification
of the usdéi definition of a random operator and a résult on the
gffect of such operators on convergent pﬁobability_distributions
(section 1.4);

‘Though most of the notation and definitions from mathematics
used here are standard, a few conventions may be unfamiliar. - Symbols
such as R = (-o,»), Rt ? {0,@), and Z for the set of 1ntegers'are
standard and are freely used. The notation C(R ;R) indicates the
set of realevalued‘continuous functiong on R+_and\is typical of the
form used to designate function sp#ces. .Other common ndtafionsAafe:

@ @&, |

(11) (Q,‘ %, P)a basic probability space;

'11p) the Lebesgue spaces on R+;

Kiii) (X, I+ a nofmed, linéar space;
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(iv) (x, #(x)) a Bofel measureable space, J(x) the Borel
| o-aigebra of x; | |
(v) F(n;X) the set of X-valued random variables on Q;
(vi) PM(X) the éet of probability measures on X;
.(vii) 'BC(X) the set of boﬁndéd, continuous (real-valued)
functionals on X; |
(viii) _QB{X) the Set.éperators mapping X -+ X, and
(ix) F"t}ﬁen+ the set of truncation opetatérs;on soﬁe function
space.
Operators op'sets of‘functioﬁs are usually denbted by F, G, H:or
- gome otﬁet upper case letter. These points are representa;ivé of
the standard conventioné used here. -
jAs a consequence of the mixture of eﬁgineerihg material‘an&
some‘mathemétiés a féw compromises in notation havevbge; necessary.
For example thg'symbpl P is reserved for the basic_prbbability
measure on 'Q; and sdv{nt} is used to denote a set‘of truncation
oﬁerators on fﬁnctions ;.usualiy denoted by {Pt} in fhe ehgineeripg
literature (see for instance Willems [64]1).

‘The terms "stochastic process, !

random procesg,"and "function
v#lued ;andom variable" are to be considered equivalenf herée. The
concept of a randoﬁ variable as a meéshreable fpncfion is uséd, and
when the random variablé ﬁakes its values in soﬁe‘set'of functions,
one of the ébove'tetms is used to indiéate_this_é#sé. The concept:

of a stochastic process as an "indexed set of randoﬁlvariablesf" [29]

is not used. The words distribution and‘probability measure are
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used interchangeably and should be considered equivalent. Thus, the
more common meaning‘cf the fdrner term is never employed hére.
Finally, real—valued functions are used almost exclusively
in this work, though it is acknowledged that nearly all the results
are true for R #valued processes. The methods used in the paper [66]
to extend the theorems there to the multifdimensional:case may be |
épplied to the results herc at the cost of some complicaticn of the
notation. :The.only exception to this voluntary rectriction to real-
valued functions~occurs in section 3.4 where some earlier work is sum-
marized and_compnred to that given here. The concept of state is
fundamental in the differential equation formulation'usediin the
earlier_wctk, and so nulti-dimensional mmmﬂdbdeasmﬁstobcthcedtfbc'the state.

to thoroughly illustrate the theorems.

2.2 Input-Qutput Stability of Dcterministic Feedback Systems:

In this'secticn a brief summary of the operator—theoretic‘
analysis of_feedback systems ic presented. The purposé here is to
recall a familiar class of problems and indicate an appropriate
" framework for their analysis. The concept Of'n feedback system as
an operator on function spaces is introduced and stability of the
feedback system defined in terms of the continuity properties of
the operator. Appropriate references are the originalvpnpérs of
Sandberg [54], and Zames [74],and the papers [63] [65] and monograph
[64] of Willcms. The thesis of bgvis [lZ]’giﬁes a tathc: complete

treatment of the input-output theory of general linear nystems.
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Let Xe be a Qector space of V-valued functions on ;hé.set
R+;_that is, each element x of Xe maps R into'vlvhefe V is some
given vector space. Let G be an operator mApping Xé.iﬁto itself
such that GO - 0. Fof ueXx, és an "input" consider the followiﬁg
equatioﬁ_

(1) x(t) + (Gx)(t) = u(t), ¢t e R,

| as descrippive of a deterﬁinistic feedback system. The operator G
represents the_cascade of all the elements ofvthé open-;00p system
and x the "féedback error.”" As a model of physical elements the
operator G must be causal and the solution x must be.bounded over
‘finite time intervals (bounded subsets of Rf). These requirements

are made precise using the truncation operators {nt} defined by

x(s) s S‘t :
(m.x) (s) : { ; 8, tE€ R

o - s >t

Assume that Xe is closed under these truncations. The operator G

is causal if (pointwise)

. S
thx = WtGﬂtx, t €R f X E.Xe .

Assume that X, has a normed subspace (X, ||*||) and that the truncations
are the projeétions, nt : Xé'¢'X'for eVery t. The existence of a
locally bounded solution to (1) is assumed in the following fashioni

“every (input) element u of Xefgives rise to a unique (output) element

x of Xe such that

(1,%) (s) +(m, G (e) = () (s) s, t e R .
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Thﬁs,_by the projection property of m_ the function ﬂtx.is an element

t
of X and is thus bounded for every t € ',
Having assumed the existence of solutions bounded over finite

_ intervalé, the system is said to be stable if bounded (on'R+) inputs

give rise to outputs bounded over.the entire time set._.Or precisely:

Definition 1? The fgedback system (1) under consideration is said
to be X-stable if for any u é X thé cénditions hold:

(1) the solution x corresponding to u is actually an elémeht

of X, |
and (ii) the;é exists a K < » independent of u € X such that
[1x]] < kl]ul].

The n;tute of the definition is clarified by the following

restatement:

Iheorem 2: [65; Theorem 4.1] Assuﬁe that I + G has a causal

_ inverse 6n Xe; then a necessary and sufficient éondifion that (1)-'
be X-stable is that (I + G)-1 be bounded on X. )

The theorem indicates clearly ﬁhat the correcf.mathéma;ical
framework for the invéstigation 6f inpu;—output stabilit& is in
'that_theoryvrelating to the invertibility of (causal) operators.
For example.if the oper#tor G is linear then the inQertibility.of
I + G requires that -i‘not be an élement of the.spectrgm_of G [12].
For Iinear; time~invariant convolution operétors on several Banach

spaces [1l] the spectrum of G is the set (aésuming g € Ll(R+))

o) = U .]m e %t (t)de .
Re(a)>0 ‘0



21

The s;gbiiity condition on G in this case is the familiar Nyquist
Criterion. | |

for the abétract equation (1) the need for general invertibility
criteria led té the following theorem whose proof was perhaps initiaily
_motivated by some similar inequalities in the theory of Banach

algebras (see Bachman (1, p. 34]).

Theorem 3: (Small-Gain Theorem) For the equation (1) under the
existence and causality assumptions suppose that G is a contraction

on X; i e. there exists a constant a < 1 such that

feX :
Then for any u € Xe the inequality

-1 4,
rxl] € @™ [ ul]

holds for every t ¢ r'. Hence, u € X implies that x € X and
Hx]| ¢ (l-a);lllull,-and so, that (1) is X-stable.

The power of this simple ahd obvibus result is iny.fully'
realized in its special cases, one of which isvthe Circ1e Theorem,
a striking genevalization of the Nyquist Criterion. Let the vector

spaceAV be R and define the (nonlinear) operator G as
(6x)(t) = j g(t-s)f(s,x(s))ds
. 0

where f : R+ X R + R is continuous (separately) and the kernel g
is locally Ll(R+) (absolutely integrable on finite intervals). Assume

that the feedback equation u = x + Gx is well-posed (has a ﬁnique
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solution) on the space Xe = L (the extended space with normed

woe
IR

subspace (Lm(i+),w

Theorem 4: (L -Circle Theorem [75]) Assume the following:
+ - ' '
1) uwe @ ®), [|-1]) -

' (ii) For some r, >0
|

rt
re ° lglt)|dt <= .

0

(111) For some constants a, b € Rt
0£ac¢ 212;51 € b < » for every t € Rf, X €R .

o (iv) For a(s) thevLapiace transform of g,'and sbme‘r £ (O,ro)
the exclusion holds
Ctd@ortiore U & .
Re(s)>-r
) For some re (O,ro)

sup |a—1(-ptj£) +-% (a+b)l> %’(b-a) ',.
EER o o

Then x € LQ(R+) and Hx[l°° £ K|lu|'; fdt some K < « independeht of u.

Remark 5: Coﬁditions (iv) and (v) mean that ﬁhe rQShifted Nyquist
locus of G does'nbt encircle (iv) or intersect. (v) the:closéd disc in
the complex plane centered at {-[-%’(a+5)]-1,j0} with‘radiué-% (b-a).
The theorem is valid on, forvins;ancé, LZ(Rf) Vith r, = 0;
however, in the L version to be uéed here (Theorems 3.2.3, 3.3.6)
.the assumption of "decaying memory" (ii)’for the convolution seems

necessary in the proof [75]. Note that if a = b the theorem reduces
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to the Nyquist Criterion which is necessary as well.

In sectionv3.1 a theorem similar to thelSmall-Gain Theorem is
used to establish general conditions for the asymptotic invariance
of the probability distribution of the solution of a general random
_equation. .In sections 372.and 3.3 conditions like the Circle |
Theorem and the Nyduist Criterion are used to guarantee asymptotic
invariance for the solutions of random convolution equations. Before
proving this result it is necessary to describe precisely the structure
of a random operator equations, and introduce a topology suitable for
the analysie of probability dsitributions indnced by random processes.

These topics are discussed in the next two sections.

2.3 Random Operator Equations:

" A. Probabilitj spaces:

In this section the concept of a random operator as a model of
a physical element with random parameters is rendered precise by -
defining it to be an operator velued random variable. Certain properties
ef random operators are noted and the nature of random eperator |
equations inVestigated., Appropriate references fer‘this secticn are
the papers of Hani [31], [32], [33] and the surrey.of Bharucha-Reid [6].
Let (Q,ﬁ¥b,P)idenote'a_basic probability space. When this
triple occurs in the sequel, the assumptions below will be implicit:
1) (Q,r)-is a tcpelegical space, always separable,* T deénotes

the topology of the set Q.

* N " - . ' ) . N
See [7, Appendix III] for the implications of this constraint.
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(i1) 7F is the Borel o-algebra generaied by the'copplogy T.

’ That is, the least sub-class of 2Q (the class of all the
subsets of Q) closed under countable unions, finite
intersections, and containing T.

~(141) P :ls a probability measure, by definition a complete (sul:_se;s_
of sets of measure zero have measure zero), countably
additive (P{U Al = Z P(A)), Ay €TF, A /\A - 4,
i + 3), fini::].(P(S'Z) <i°°§, set function mapping :7 into
R+, normalized so that P(Q) = 1.

For any measureable space (X, ﬂ(X)) here ﬁ(x) indicates the
Borel c—algebra of X, let F(Q X) denote the set of X-valued random
variables on_._' 2; that is, the set of funcg:ions f : Q + X and f is
measureable 1n the sense that f-l‘B(x)C ¥ s, OF that the inverse
image of every measureable set 1is measureable.

Example 1: (Gaussian measure) Let (X, (X)) = (R ﬁ(R)) ‘the real line
with & (R) generated by the open intervals of R. Let f ¢ R—R be

a continuous function (hence 73 (R) measureable) and assume that the

measure M. is defined by
He(A) = Plo e i) € A e BRI} = - r 1, 12,

Then (R, Q(R)', uf) is a probability space and f is a Ceussian

random variable.

‘1‘5 denotes the characteristic function of the set A.
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Example 2: '(Wiene: measure) Let (X, 9(X)) = (C(R+),_ﬁ(C)) where
C(Rf) is the set of real-valued continuous functions on R topologized
by uniform convergence on compact'intervals._ 4 (C) is the least

o-algebra containing sets of the form
A(t;a,b) = {f € C: £(t) € [a,b)c R} ', teR .

A measure P is induced on A(C) by its definition on such sets A.
P{A(t;a,b)} = P{f € C : £(t) € [a,b) | £(x) r € &5 < t}

-—_ Jb e-[x-f(s)]Z/ZCE(t-s)dx
t-s a '

P is in this instance the Wiener measure [7]. 'Noﬁe that for s = 0,

the assumption £(0) = O is standard.

B. -Random Bquations:

The following definition was given by Hans [31].

Definition 3. Let (Q, ¥ ,P) and (X, 8(X)) be given, then a map

T :Qx F(Q X) + X is a random operator if T(* ,x( )) = y(*) 18 a

random variable (an element of F(;X)).

Example 4: (Deterministj.c operators) Let G be a continuous map
X into X. Then it is routine to verify that G : F(Q;X) - F(;:X)
and that every continuous deterministic operator is a random operator

aceofding to Definition 3.

Example 5 (Linear convolution) Let (X, # (X)) = (C(R) 4(c))

»and let g £ C(R ). Let w denote the Wiener process ~and x € F(Q;C)
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independent: of _w.‘ Then the C-valued function y (on ) defined by

(its value at t)

ft . _
y(t,w) = j g(t-s)x(s,w)dw(s,w) , t € R+,. weE
0

is an element of F(_Q;C). The integral on the right is defined in
the 1:6 sense; its properties and a proof of the assertion here
are given in Tto [40]. The convolution above defines a linear random
operator on the space of C-valued random variables.

An alternate formulation of the notion of a rendom operator
may be given as follows: Let x,d) be a separable metric space and
,&ClC) the set of all continuous 'maps X + X. Give to the set Jb 0)
the (strong) topology 't generatedby the convergence Gn 2 G if and only
1f " |

.d(an, Gx) ? 0 for every x € X .

Let ﬁ(;b ) denote the Borel o-elgebra of subsets ofj - %) generated
by this topology. Then for any (R, F ,i’) given, let F(Q; .9 ) denote
the set of 3 -valued random variables. That is, each element E of

F(Q ,b) maps SZ into Y (X) such that g(w)[ ] = G ( ) E:)b(x) Thus,

for every w € Q G(w)[ ] 18 a continuous map X + X; and so, this
definition codmcides with Definition 3 on the continuous operators.
Moreover,' it 'is clear that probability distributions may be intro—
duced on .ﬁ(,d) and convergence arg@ents made for random operators

as well as for random variables in the usual manner. In the next section

this possibility is investigated further and the preservation of probabilistic
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convergence under random 6perations discussed.
The use of random operaﬁor equations in section 3.1 necessitates
a discussion of the nature of a solution to such an equation.

Definition 6 : For '(9,:7,1’), (x,ﬁ(x», C e F( X)), and

y € F(Q;X) given, then every element x of F(Q;X) satisfying.
Plw : G(w)[x(w)] = y()} = 1

18 a solution of the equation Gx = vy,

Thus, a solution is required to be a random variaﬁie; that is,
to have certain meagureability proPerties. This quélification hasi
been thg source of a cbnsiderable‘amount of tegearch qq the nature
of soluﬁions to random:equations (see for 1nstanée.Han§ [32],
Bharucha-Reid [6]).~ Mbét of this has been a consequence qf_the
ambiguous nature of Definition 3. | .

Assume that (X, [|-]|]) 1s a Banach spacé. An;éleﬁent G of
F(Q;)b(x))-is'said to be a random contraction if there exiéts a
real-valued random variable ¢ such that c(w) < 1, for_every we,

and
Hew)lx,] - G Ix,1]| ¢ e@||x;=x,|] . -
- The analbg of the Banach-Cacciopoli fixed point theorem (42, p. 627]
in this setting is:
Theorem 7: [33] Let (X,|]*|]) be a Banach space, G ¢ F(Q; g (X))
-'a random contrac;ion, thenfchere exists an element x of F(1;X) such

that
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Plu: ¢(w)[x(w)] = x(w)} =1 .,

The random‘variable x is unique almost everywhere'(P), and may be
obtained by the process of successive approximations starting at
any initial element x, of F(0;X). . |

This result'is then the basis of the proof of ekistence and
uniqueness of solutions of random operator equations. For the
equation Gx = y,»vgiven é € F(Q; | (X)) and y € F(ﬂ;k) if G may be
shown to be'a contraction, then Theorem 7 may be invoked to assure
the existence of a unique element of F(2;X) (as a set of equivalence'_
classesvunder'P) as the solution. Moreover, the classical scheme of
Picard iterations may be used to approximate the solution. This
~ 1is a result of . somewhat more subtlety than is apparent at first reading
as it implies that the Picard iterates are at each step random
variables, andzthey approach almost surely a-random element which is
the desired solution.. In most cases of course only local existence

and uniqueness may be established in this manner.

C. Moment spaces:

As the convergence arguments used in Chapter 3 utilize certain:
moment bounds, it is appropriate at this point to introduce a few
defiuitions of "moment spaces" and consider operators on these spaces.
Let (Q,%,P) and (X 13(X) || |]) be given and denote by E(-) the

usual expectation operator on the subset_of F(Q;X)_for‘which

Ex = I i(w)P(dw)'.
BRI



29

18 well-defined as a Bochner integral {72, p. 219].

In particilar define the sets (of equivalence classes)
xy & ‘x) 3 LIS V2 B }
_a(’q(Q,X) = {x e F(@;X) : |x|cl = (E{||x| |} <w; qe€ [1,0)]},

" And in the case that'(X,|l°||) is a Banach space of’feal-valued

functions on Rﬁ the spaces
eq(sz;x;}z) = {x ¢ F(;X) : llxllq,ﬂ - -(z-[n{lx(:;w)}»q}])1/q< ® ; qe[l,=)},

: o . :
Here £ is any sub-additive linear functiomal  on real-valued functions.
Typical exaﬁﬁles used here are

8. (f) = ess sup |£(0)]
1 ter"

2,(£) = r‘lf_(c)ldt

b 0 ‘
Undef these restrictions on £ it is cléar tﬁat Il'llé’z is avnorm»
and (Eq, ”'”q,z) a normed linear space. Under the choices %,
and 2.2, Eq is a Banach space as well, Thus, elgmenté of Eq(Q;X;lﬂ
are (almost surely).bounded in qth‘absolute momenf. Eiements of
ea(n;x;zzj have absolutely integrable qth momegts. See Iﬁa I39] or
Skorokhod ISS]_where similar spaces are defined and used in existence
#rguments for stochastichiffefehtiallequations. _

Assuming that (X,'I"II) is a épace of fﬁnctions,closed

under the trunéation7operation (v., see section 2.2), the "extended

* 20ety) € L0+ L(Y), L(ax) = |a|8x) xyeR, acR.
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spaces" Eq’z-n {g>e F(Q;X) : LR € Ea, t e R} are cénveniént
for certaip statementé pertaining to the existence.ofisolutions in
feedback eguations.

Let .Y (X) denote again the set of operators mapping_x into
igself confinuously; For thoae elements G.of F(Q ;&) for which the

supremum is finite define

|6x|
'GI = sup —T—'-g
1 xedly *lg

lelqig

And under the assumption that X is a function space and )&(X) consists

of causal operators (see section 2. 2) then for G e F(Q ,27) set

: ex||
llellg = e TRTS
. xekq e
[=l] %0
Note that in this case ||G||q depends on &.
A few examples are given below to illqstrate’the definitions.
Example 8: Consider the space Eztﬂ;X;ﬁl)vand the (deterministic)

operator G on X = C(R+), the continuous functions, given by

(Gx) (t,w) = y(t,w) = [- g(t-8)x(s,w)ds
0 .
Then v

t ot ' . L .
Eyz(t)'n f [ g(t-s)g(t-r)E{x(s)x(r) }dsdr
070 ' : .

< <] g(t-s)(E{x ) H/%as

Hence,
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_“qu’gisJ: ‘Ig(t)]dt '|xl|q’£1 ,

and the bound is #ttained.

Example 9: Comsider Ez(a;x;zz) and fhé operator G on X -'Lz(Rf),
the space (aetérminiétic) of square-integrable real-valued functions.
Then, for y = Gx, |

t

y(t,w) = [ g(t-s)x(s,W)ds , t € R+, we
0 .

where

T 2 o T ¢« ¢t z S
j E{y“(t)}de =f E{(jgfgﬁtvk)x(s,qgﬁls)s%}tlttf
0 - 4o o S

T rt t 2. ,
< j ‘f 1g(r)|drI, |g(t-8) |E{x“(s) }ds dt
0°‘0 R ¢ ’
.2 .
g (]” gty [ae)® « |[x||,,
[ e il

This bound,'howevér, may be iﬁptoved by taking into account
the fact that for each w € Q the integral jw lx(t,w)lzdt < w,

Henée, each sample function x(w) admits a Fourier transform,
§(jv,m):=ff x(t,we Ve ,wel veR.
40 : v -
Hére' equality holds in thellz(R+) sense. Assuming that g € LZ(R+) has

a transform a(jv); then for each w €

Fyz(t,w)'dt £ sup lécjv)]z r'xz(t,w)'dt
0 _ VER 0
and use of the»Lgbesque Dominated Convergence Theorem [16, p.151]

for E(.) permits the conclusion

llylly,g < o [Buw] Hlxlly,, -
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Moreover, this bound is attained.
Example 10: Again for the case X = C(R+), consider the random operator

G on F(Q;C) given by
' o ‘ t . .
G W) [x(w)]) (B)=y(t,w) = J g(t-8)x(s,w)dw(s,w), t € R+, we
' . _ 70 ' A o

on non-anticipating functions (i.e. T x is independeﬁt.of (I-wt)w

t
for all t, see section 3.2) in EZ(Q;X;II). The following calculations

(L) ,E{Y?(t)} - E{(Jofg(t-s)x(s)dw(s))zl
2t 2 2, ..
=0 [ g (t-8)E{x"(8) }ds "
0 :
(ﬁere E{(dw(;))z} = czdt) permit the conclusion
oy g6 ok [ 1w ™ [1all,,

where G is ;hg.Fqurier transform of the.kernel g. See, for instance,
McKean [50] for details of the reduction of (1) which makes use of
thé decisive property'of qrthogonal increménts of w. Extension of
this idea is‘the bésis of several moment 1neqqalitie§ pfoVen and

‘ used in sections 3.2 and 3.3 below.

2.4 _IgpologieQ for Random Pro@esses:

The appiqpriate tbﬁoiogyifor the convergeﬂce arguments of the
next chapﬁe: is introduced 1n.this sgﬁtion.‘ The topology is the usuai
one geﬁeréted‘by weak convergence on a seﬁ of meﬁsures and, following

a brief diééussion of the general case,'its properties are discdssed
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for'cérfain random function spaces inclnding the continuous functions.
The preservetion of weak convergence under mappings is the final
subgect of tnis'section. |
| Consider the following question: If the randombprocess x(t) is
the limit in some precise sense of the sequence of orocesses {xn(t)},
‘then for some fnnctional fvis it possible to determine the distribution
of f(x) if those of_f(xn) are known? In other words is the distribution
of f(x) the limit in some sense of the distributions of f(xn)? It
is clear that sdme régularity assumptions must be piaced.on‘f.to
make these questions meaningful. Typical examples of functionals
£ are | _ |
t, ‘
£(x) = I g(x(t))de
- tl

| f(x) = . gup ]x(t)Jm .

£ ystet,

The'techniques introduced below heve.oeen.developed to answer
questions such as these. -
Let xx,d) be a complete,’separable metric space and let
fh(x) denote the class of . Borel subsets of X generated by the
~d-topology. Let c(X) denote the set of continuous (in d) functionals
on X. Let G? Sz »P) be the basic probability space and let x, x:Q+X

be random variables.‘ The distribution of x(x ) is defined as -
u(n)(A) P{meQ. ()(w) €EAc¢ ‘B (X)} T

Then a necessary and sufficient condition for convergence of the

_sequence of distributions of f(x ) to that of f(x) for all fe C(x)
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is that

lim j h'(:f:)un(dx) ij h(x)u(dx)
) . z

For all bounded, continuous functionals h. This aﬁswera the duestion
posed above subject to the restrictions imposed and makee further _
study of the limiting operation above of interest. |

On 1ad(x)‘1et PM(X) denotetithe set of probability measures,
and let BC(X) denote the set of bounded, continuous functionals.

1f for_elemehts M. » W of PM(X)
j' hdu_ -+ j hdu » for every h € BC(X),
x ® X

then - u converges weaklz to u, or u ; H. This convergence is

determining by the following.

Theorem 1: ,[7, p.9] Elemente U, V of PM(X) coincide.if.j- hdy -
: - o ; e S
hdv for every h € BC(X). Other implications are given in [7, Theorem

v

X
2.1, p. 11}.

Let a subset A C PM(X) be called relatively cbmpact if every

sequence in A has a weekly convergent subsequence (wheaglimit need
not be in A, though in PM(X)) This compactness definitioh will

be used in Chapters 3 and 4 to prope the‘existence of invariant
distributions for stochastic processes. The criteria for deeermining
relative compactness in general metric spaces are due largely to
Prohorov and'are given below. A family of probability measures

A C PM(X) is called tight if for every € > 0 there exists a compact

set K(€) € X such that u(k(e)) > l-e for every T > A [7, p.37).
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Theorem 2: [7, p. 37] Let (x,d) be a completé, separable
metric space, Ac PFH(X), then A is tight if and only 1f 1t is
relat;vely compact. |
On PH(X) define a neighborhood system via the following
'sets:for u éiﬁmﬂﬂw, e>0, K¢ Z+
N,y = {v e PM(X): | jx hydv-. hidul < g,
h, € BC(X), i=1,2,...,k}

i

Call the topology ) generated by these neighborhoods the topology

of weak convergence; clearly u - W if andtonly if =y > u(¥).
: -4 n W n -

A natural question to'pose 1s: When is W metrizable?
For U, Vv € PM(X) let
€, =inf {e > 0: u(A) ¢ V(N_(4)) + €}
where NE(A) -'{x € X: d(x,A) < €}, and Ac X is closed. Let €,

be defined by reversing the roles of u and V. Define

L(u,v) = max '(el,ez)
Theorem 3: [7, pPe 2381 The functién L is a meﬁricfon PM(X) éalled
the Prohoiov ﬁéﬁricf Moreover, the L-topology is equivalent to )}
if thebset‘x is separable..
By defihing the distance between two random variables to be
the L-distance between their distributions a metric (L) may be
defined on F(Q;X) the set of X-valued random vgfiabies. It is.rOutiné

to vérify
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Ptogoéitioué_ 1f {xn}, x are elements of F({};X) then

P{we,Q:d(xn(w),x(w)) +0} =1

implies L(x 2X) = L(u ,ux) - 0.

Conversely, k
Theorem 4: [56] If {xn} is an L-Cauchy sequence (possibly defined
on dif‘ferenvtv probability spaces), then a seﬁuence {yr'l}' and y may

be constfucted on (R, ¥ ,P) such that
L(x ,y ) = 0 and P{w;d(yn(w),y(w)) »‘Q} 3‘1,

"Call a subset A = {xa, a € A} of elements of F(2;X) indexed
by A, totally'L-boun'ded in (P(Q;X),L) if every infinite sequence
{x 3 2

i is equivalent to the induced distributions of {x } being relatively

n-l taken from A has an L-Cauchy subsequence. This property
compact, Precisely: _

Theorem 5: " [53) For A to be totally L-bounded, it is neeess'ary and
sufficient; that for every € > 0, there exists a compact subset

K(e) € X (independent of a € A) vith

Plw : x,(0) € RK(e)} > 1-¢ , : acA
Or. equivalently,"that ihe induced distributions {u ‘ } be tight.
Xa
Assume now that the metric space (X,d) is the space of R-valued
continhous functions on R (denoted by C(R )) with the metric

fe
d(f,g) = Z 2 _H_:.S.Hil.
n=1 1+ fg n

L
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where'llhlln = sup |h(t)]. Then (C,d) is a complete, separable
- 0gtgn

metric space. In this case F(Q;C) is a space of random functions.
The basic compacthess.result for measures defined on (C, 13d(C))

is giQen by the following:

Theorem 6: - [7, p. 95] A subset A c F(11;C) is totally Lfbounded if

the foilowing conditions are satisfied for any sequence {xn}FC.A:

(1) the sequence (of distributions induced by) {xn(O)} is
tight;' |
and (ii) therebexist constants Y 3 0 aﬁd e > 1 and a non-decreasing,

¢0ncinuous.function f on R+ such that
Plw: [x_(t)-x_(s)] > A} & -%. |£¢e)-£¢s) |*
" n n A
for all t, 8 € R+, ne Z+, and A > 0.

Corollary 7: The moment condition .

B{x_(0)x_(s)|"} ¢ |£(e)-£¢e)|°

implies condit;on (11) via Chebyshev's inequality.

Corollary 8: ([41, p. 10] A subset A c F(Q;C) 1is totally L-bounded
if there‘exist ¢ > 0, c#\> 0, n-l;z,...,An € 1Bd(c) sﬁch that,

for every * €A |

W E#EO}cc ;
(i1) E{jx(t)-x(s)|e 3 xeAl}« cﬁlt—s[z » 0<s,t<n
Wit) ¥ A - Plorx@) e A }) is uniformly convergent on A.

n=1 _ :
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These fe#ulfs will be used in Chapter 3 to investigate the
behavior of the solutiot;s to stochastic feedback eqhétions. In
that setting it is necessary to understand the transformation of
distributions by operators on sets of stocﬁa‘stic proéesses.

.~ Let cx, 'ﬁ(x)) and (Y, ‘G (Y)) be measureable spaces and
C:X+Y a measureable function. for £ € F(Q;X) let Ug be the

distribution indused on A (X) by f. Recall ;hat
'uf(A) =Plw: f(W) eAde Bx)} = P(f-]-')

Then assuming G : F(Q;X) -+ F(R; Y) for £ € F(2;:), Gf 1nduces in

the same way a distribution on: G(Y) according to
Hgg (B) =t P{ui P GlEW] e Be S}
. Plw : £(u) ¢ G-:lB e ()}
- ﬁ'f(é“;ln) .

If G 1s a randqm function the tfanaformatidn is more interesting.
Let (X,dx) and G,dy) be separable ﬁetric spaces. ‘Then A @&,Y) is the
set of operavtors'_g t X +_Y', cont_:l.nupus in the strong »topollogy. Let
)& (X,Y) haye. the. strong oi:erat:or topoiogy [16, p. 475], And let
& ( ﬂ ) be ‘th‘e least Borel o-algebra induced by this topology.
As in section 2.3,‘F(Q;)6 ) denotes the set of )Y (X,Y)Jvélued random
variables. |
A criterion sufficient to guarantee the assumptioh G : F(Q;K) 4« F(Q:Y)

is the following
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Theorem 9: [32] Let x be an element of F(Q;X) and let G ¢ F(Q ,b),

then the function y ¢ @+ Y given by
y(w) = (Gx)(w) = G(w) [x(w)]

is a random variable if G(w)[-] is continuous X +Y fot' almost
every w € . Thus, every G € F(Q; .4 ) maps F(Q;X) into F(2;Y).
For the random variable y = Gx a distribution is induced on

B(Y) according to
Moy (B) = Plw : (Gx)(w) € B e B(Y)}

= P{w

&w) [x(w)] € B}

Now by assump_tion (X,d.) is separable, it follows that X has a
cOuntable base [7, Appendix I] that is, a family of open -sets such
that every other open subset of x is the union of a sub-family of
these. Indicate this base by ? {Ai} 4a1 and assume (without
loss of gnnerality) that the A1 are pairwise disjoint. It follows
from the Borel property of FG(X) (it is generated by the topology)
that ﬂ(x_), is generated by % Returninggto the expression for
Hox for GeF(ﬂ,ﬁ ), if follows from the last few-:emsrks_‘ that

Moy (B) = P'{A}é}}( Hurx@) € 4} 0 {o e e & @,mh

®
= 1w (A)u (g (,,B)

i=1
Here LJ (Aib,B) < A (X,Y) is the set of operators g mapping X into

Y and Ai into B. (The random variables x and G have been assumed
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independent under P). The fomaﬂxwm

Hog (B) = f

follows from above.

W, (dmus 8 (In},B))
X .

Now assume that X and Y are Revalued function spaces on R+, closed
under the truncation operators {“t}teR"" Let _§ (%,Y) be further
restricted to include operators causal as well as continuous. Each

element x of F(Q;X) generates a set of distributions {u," x}teR+ on
$(X) according to the rule

uhetx(i\)' = P{(A 'v:'u:i[g;x(w) € A} .

And in the same manner as above for G € LY (X,Y) and B ¢ 8 (¥)

B = U . (B
qu&i "tG"tx'

- uﬂtx[(utcfln] .

~ Assuming that (X‘,dx) and (Y,dy) as sets of functions are.
separable, metric spaces, and that the random opératbr G is an
element of F(Q; 54 ), then the formal expression below gives
M o (B) = J u_(dmu_ (Y ({n},B))
mGxT g TeX "tG s
the distributions induced on ‘B(‘i) by Gx for any element x of
F(Q:X).

As the final topic of this section consider ti\e questions raised
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by.;he transformation of a weakly convergent sequence,of'distributions
by an operator. Pfecisely, let A c PM(X) be a fe&itively compact

- set of meaaures and let H be a function mapoing X into itself: under
what restrictions does H preserve weak convergence in PM(X) and
relative compactness of A? A partial answer is given in |

Theorem 10: (Tops¢e [61]) Let (X,d,'{S(X)) be a complete, separable
metric space, H.a measureable map from X into ntself, and {un}nrl a

- weakly convergent sequence of elements ofvPM(X) with limit u. Then
the sequence {un(H_lo)} *® s weakly convergent (to u(H *)) if

H is continuous (modulon;§.

Though easiiy proved by examining the terms

f £(H(x) )u (dx)
x .

for £ € BC(X) (that 1s, f(H:) € BC(X) if H 18 continuous), generalization
of this result:to the case where H is random is not etrdight-forwatdﬂ

For u € PM(X) and G € F(Q; xd (X,X)) define

Y@ = ue@™rey .
In general let L denote the Prohorov metric on PM(X) and let
B (PM) be the &east Borel o—aigebra generated by thevL-tOpology.' For’
any basic probability space (Q, F PO then F(Q PM) has the usual |
interpretation and is well-defined as a consequence of the metric pro-:
perties of L. Each element v of F(Q; PM) 13 pointwise a probability
measure, v(w) € PM(X) for each we |

Two definitions of convergence of F(;PM) are given in
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Definition: (i) The sequence {v“(w)}'c F(Q;PM) converges weakly

almost surely to v € F(Q;PM) if for every £ € BC(X)

1in ess sup | j f(x)vg(ﬁ)[dxj - [. £ (x)v(w) [dx]| = 0
n-+o we X X :
Denote this by \)n wiL v..

7 (11) The sequence {vn(w)} C F(;PM) converges weakly in mean to.
v € F(Q;PM) if for every f € BC(x)

lim E{| J f(x)vn(w)[dx] - I £ (x)v(w) fdx] |} = 0

n-e X X »
Denote this by vn- VTL:L V. | |

The next theorem gives conditions on the operator G € F'(Q;;ZS) so that

convergence in the senses (1) ‘and (i1) above is impliéd by w, in the
Prohorov topq‘iogy. | '

~ Theorem 11: Let (X,]]*]]) be a separable Banach space, and let G € F(Q5.8 (x)).

) "I‘hep‘.‘ M, * M (in 1) implies that

V.

‘] = uﬁ(G(w))-lo) WL G for some vV € F(};PM) .
(i1) Let G € F(§; ;ﬁ) be such th’at;’

E{||ew)[x]]|} ¢ K]|x]]
for all x € X and some finite K independent of x. ,_Then uo+u
(in L) implies that v., =+ V for"so_me ; € F(Q;?M). |
¥ n w,Ll _ . .
Proof: (i) Since G(w) € J (X) (modulo P), £(G(w){*]) is an element of
BC(X) for almost every w € { and evéry .f € BC(X). Hence, for aln_:ost
every w € Q | | o

1im Jx f(c(m)[x])ﬁn(d_x) - Jx £(G W) Ixuddx)| =0

n-»e

which implies the conclusion for V(w) = u('G(w)-;l').'
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(i1) By the hypothesis.of (ii)_the integral

J G(w) [x]P(dw) is uniformly bounded (||+|])
e

in x. Thus, since the“u are probability meaeures (specificelly,
they are G—finite), Fubini 8 Theorem implies the equality (for

every fe BC(X))
jﬂ J f(GOJ)[x})un(GX)P(dw) =-J ]n f(G(w)[x])P(dm)un(dx) .
Ix

Since f € BC(X) and Gw) € ,8(x> (almost eurely), and by the assumption '

of (i1), the function

| f £(CW [ ])P(dw) : X + R
Q .

18 an element of BC(X). The conclueion follows using tne reasoning
in tpe prooflof.(i). | | | |
_ _ - 922
Remarke° (1) Thus, continuity of G(w) on X, a&most surely (P), is
sufficient to guarantee (w,L )-convergence for G operating on L—convergent_
distributions Moo Clearly convergence (w,Ll) implies convergence
w,L). | |

(2) It is uSefui to think-of the elements of F(Q;PM) as "random
distributions." .That is,'assume that a number of control policies
are available and that each of theee is stochastie because of the nature
of the task at hand; Then each of these possible policies may be re-

presented by an element of PM(X), and if the control decision is made
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at random it may bebmodeled as an element of F(;PM). In othe; words
a control policy is chosen according to some probability law from a
set of stochastic ébﬁtrole. See the paper [76] for some relaﬁed
definifions of relaxed stochastic controls.

In the setting heré the uncertain.system "randomizes" the set
of probabiliﬁy diétributions representing the input and it is this

point of view that is used in the lé:ter portions of section 3.1.
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CHAPTER 3

ASYMPTOTIC PROPERTIES OF srddm&snc SYSTEMS

3.1 Asymptotic Properties of General Feedback Systems:

The results in this chapter summarize an analysis of the
asymptotic properties.of feedback systems described by possibly
random operators and subjected to stochastic inputs. In this |
section the properties of general feedback systems are investigated,
and a theorem akin to the Small-Gain Theorem (section 2.2) used
‘to establish moment bounds for signals in feetback systems. Under
certain conditions on the system operator and the input the distributions
of the feedback signals are shown to be asymptotically invariant.
These results are reviewed in_sections 3.2 and 3.3 forycertain'feed-
back systems described by random convolutiontoperators. In section
3.4 a summary of the related existiugitheory for systems‘described
by differential equations is presented.

Before undertaking the snalysis of the asymototic properties of
uncertain systems it is important to define precisely the nature of
such a system in feedback form.. First the notion of a proper
signal space is required. Let & < R be a linearly ordered set, the
time set. Let X be a set of R-valued functions On YH N assumed.toibe
Borel measuteable (i.e. X (1B(R)) cfce ) for every X € x.v Let
{w }te a8

and denote by {£_ }

denote the set of causal truncations introduced earlier,

tte B the set of anti-causal truncations. Assume

that X is closed under both species of truncagion. In that_cese
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and y € F(2;X) b§ continuity of G. FPurthermore, for x € S(2;X),
G e )8C(X),and aseﬁﬁing GO = 0, then y € S(2;X) because G is caesal
(and GO = 0). |
A feedbeckvsystem_will be specified By a set of ieputs, a
plant, and a feedback_eontroller; Iﬁ'will be assumed here that the
system siénals.have their valuee in the same sﬁece as the ;nputs.
The input space is defined as follows: Let X, @ , and
(QI,Z?i) be speeified as above and lee {Pa}ueA'(A an ihde$ set)
be a set of probability measures on (Ql,.Sfl), For each a e A,
fe S(Ql;X) induces a probability distributiodnon (X, £3(X)) according

to the rule -
u'a,,,tf(n) =P {ue 'le(utf)(g) eBe B} .

- The inﬁut epace'ie defined es an element of (S(Qléx),ua)aeA
For eome choice o € A. ‘The flexibility allowed bj speéifying’a set
of distributions {Pa}aeA rather than a single distiibbtion reflects
the empirical'nature of the analysis of ph&sical systems containing
dhcertainties. vFrequently a number of hypdthetical distributions
for any uneeftainty ate>pfoposed and éoﬁe method of»hypothesis testing
used to determine the "best" ofvthe candidates. This selection process
should be regarded as preliminary to the analysie conteined here.

The plant is defined_by'the following procedure: Let )ﬂ X)
be specified as above, and let (92,.372) be a measureable space (possibly
distinct from (91,17 )). Let {PB}BEB be a set of distttbutions on
;7&7 Let F(QZ;QZ) be the set of)bg-valged random operators on 92
governed by the law Hg 1pd§ced on 19()§;) accordigg to . .



47

o : x(s) s>t
(€.x)(s) = _
0 8 £ ¢t

or symbolically Et = I -vﬂt- (I the identity on X)7’

Giving G‘ an appropriate topology (relative to R) X may be
topoiogized and a (least) Borel o-algebra -8(X) induced By the
topology of X. To emphasize the fact that the_sYstems to be studied
here are to.be.considered as control:systems,.the.set;of signals. =

is constrained to begin at some finite time. Thus; the set of

signals admitted in the system is constrained as

S(%X) & (£ e FEX) ¢ E£20 forgome te 8.

Let )bfx) again denote the set of operators mapping X into
itself. Indicate by ,27(x) the subset of )ﬂ(x) consisting of causal,
continuous operators. - All systems to be studied here will by assumption
be constructed from elements of éﬁ;(x). Note, hduever,.that this
does not imply that the'overallvsyetem will be either ceusal ur
continuous, end in_generel edditional cenditiensiwill ue required to
assure preservation of these propertiee. See W111ems [64] for a

discussion of this feature of feedback systems which. he calls well-
.posedness} Every element of )ﬁc(X) inducea a natural map on F(2;:X)
into itself using the continuity assumption and a natural map on
S(1;X) by the additional restrietidn of causality. That is, for

x € F(%X), 6 4 (X) then

y@) = Glx(w)]
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uB.m(D).' PB{w € Qz :m(@) €D 13(«@2)}
bi any element m of F(Qz;,xﬂc). The collection
(P@y; A D mgleey

is the set of plants "se1ected" according to theilaw uB chosen as
<q§t&mmiyf accounting for the physical 6bserations. |

For the purpoées of this analysis the feedback,operatOr is also
aasumed'ﬁo be uncertain, though in désign problems it usually may

be freely chosen. Under this assumption the set of feedback controlders

ié specified in exactly the same manner as was the sét of plants. For
a given measureable space {93, :73) and a set_of‘hypdtﬁetical diétributions.
{PY}YET on :73 a feedback controller is aﬁ e;emeﬁt of F(93; )gc)
governed by the>iaw PY specified as best. |
For any.element x of F(ng) let 19(ﬂtx) denoté the least
Borél_glgebra generated by nx, 8 € £; in symbols' -
B = Y Bao By
s,te B "
The assumpfion of mggau:eability»of'§:a§§ures ;hat 19(n£x) c :7_
for every t € 0.

Definition 1: Given a measureable space (Q,.7) and a set of probability

measures {PG}GCA on ¥, a functional! h on F(2;X) into itself is

"said to be.'a-non-anticipative if for every x € F(;X), 13(ﬁt[h(x)])

is independent of 19(£tx) for every t € 8 with respect to P.

See-fpr'insthnce, Gikhﬁan and Skowkhhd [29, section 3.3] for
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a discussion of in&epéndence of set'algebras.. Cél; h non—anticipattve
if-h is a-non-anticipative for every a € A.

Informally stated the definition says that values of the.function
h(x) (t) are independenc of the future E x of X, at least with respect

to the distribution P .

Proposition 2: 1f h is causal, h(wtx) - ﬂth(ﬂtx), then h is non-

4

 anticipative.

Definition 3: Aistochaatic dynamical system is a 4-tuple

(X, (By)yeps @ ), (Pglgp? where 5(2iX) 1s the set

BeB
of X-valued signals, {Pa} a set of distributions on (91, ;71),
-{'PB} a set on (92,32) and F(}Zz,:@)? a set of )5 -valued maps on |
92. Here each.eiementic of.JE is non-anticipative (with respect
to {Pa}) on $(Q,;X) into itself. ‘Moreover, fq;'éach G 2,27 |

assume GO = 0,

Definition 4: A stochastic dynamical system is said to be in feedback

form if it may be written as the 6~tuple

{s(_nl;x). {r }m ; rm ), (py) slges’ rma.)én {p ser}

where the compoqents have the meanings and implicétioha established
above. Moreover, that the operator H selected on (Qz x 93, ;75 x ;35)

dccording to {PB} x {PY} given by
H(wz,w3) = (I+K(w3)o G(mz))
G ¢ F(Q ;;ﬂ ), Ke F(Q:.8)) is one-to-one and non-anticipative

with respect 6o {P } on 80, ;%) into itself. In addition HO = 0.

Clear from this definition is the observation that by identifying
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(Qz x 93’ r?zx 0?39 {PB} X {Pﬁ}) with some space (Q, ?’{PG}) the
random operator H may be specified on Q by

HW) = I+ G(@)
vhere G 138 a ,5 -valued random variable on fz. Moreover, by combiniug
.('Ql. '71,{?“}) and (Q, F ’{PG}) intthe same way, it is possible to
define H and the input signals S(Ql;X) on the same pr_obabiiit:y space,
governed by the same collection of probability laws. The conclusion

of this argument is that, for the purposes of this analysis at.

. least, it suffices to consider the random operator equa_tion
x(w) + G(w)[x] = u(w)

defined on some probaoility space (9, F ,{P }H as repfesentative

of the feedback system under investigacion. Here u,x € S(; x),

u an admiss:lble input, X to be studied, and G ia a random operator

on F(Q,X) into itself, non-anticipative with resp_ect to {Pa}a.eA' More-
over, for thé purposes -of the analysis to follow it is a useful )
simplification to assume that G(w) is an element of ,J (X) (c )é ),

the causal continuous operators on X. 'rhus, using Proposition 2

abov_e, che qualifier "non-anticipative with respect to {Pa}" may be
ignored for wauth operators G. Finally, the assumption is made that

by some decisio'n process the “best" dis‘tribut.ion" has been chosen from
.among {P } x {PB}B x {P } on the: ‘product space (Q x Q, x 9 ,’.}‘1 ,.7 ,7)
Designate this_ un_derlying basic space by the cust'omar_y symbols (Q, :7 » P).

Recall from sectiou 2.3 the.-defiiitiou of the spaces gq(:z;x;z)
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and qu(ﬂ.) (from here on the arguments  and X will be omitted
when not of central concern). Let G be an element of F({; A )

and u any elemeht of S(0;X), then make the following:

Assumption (Al): (Existence of a localiy bouhded éolut‘._ion). For the

equation ‘ _
(1) u(t,w) = x(t,w) + CW[xWND(E), te 8, we

assume that u ¢ Sqe(l) implies that x ¢ €qe(£).

That is, that X € Eq(z).

As remarked aivowe the assumptions of causality and continuity of G

ue Eq(z) for any t ¢ @ dimplies =

on the function space X §and GO = 0) establishes that x £ S(f;%).
What is assumed here is roughly (dependent an 2 the additional
property that x has a ."'locally" bqunded qth_absolut;e moment .

The foliow:_lng resuit is the Aﬁalo’g’ of Theorem 2.2.3 (SmaJ.l
Gain 'Théorem) in this seﬁting. |
Theorem 5: Fd: the equation (1) ébdvé subject to the assumptions
introduced with G € F(Q; ')ﬂc) ‘and u £ €q ) ﬂ S(.SZ;X'), a sufficient

condition that x € Ed(l) N S(Q;X) is that
<
”G”q,f, € a(l) <1

for some a(l_) independen-t of u.
Proof: By the assumption (Al) x exists and by wirtue of the causality
of (I-l'(;)-'1 on X, x is an element of qu'(z) ﬂ-vS(Q;X). -Hoteover,

using the ca'usality of G

Tex(W) = muw) - TEWITxW], te B,uweQ
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80 X does not anticipate u and is a well-defined solution. Next
using the triangle inequality property of ||-||é 4 @8 a norm,
N

it follows that
[Ingxllg g € 1l 4 + Imtngl
The assumption on G permits
[Imgxl I g € Hmgull, g + eIl |,
The restriction on a(f) and the as’sumptioﬁ ueE Eq lead to
. | -1 _
Irexllg,p ¢ D@1 M lully -
Observing the right hand side to be iudépendent of t € O 2t follows
thaf
. ‘ : : -1 —_—
llxllg,y = dw linxll € Gaw1™lull,
and hence, that the conclusion of the theorem is valid.
| m
‘Note that the inequality ||x||  , < K||u]] . for some K < ®
q,% q,% 5 .
is a "bonus" not required in the theorem. In deterministic stability
theory this property (I1x]] € K||u||) is sometimes called "finite-
gain stability” and is frequently included as a condition in the
definition of stability to preclude certain unfform boundedness

arguments.g See Willems [65] for a discussion of this point. Though

not explic?tiy required above the finite gain property will be
| _ » .
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decisj.ve below, where certain assumptions on u are uz;ed to deduce

propérties of x other than boundedness (see the proof of Theorem 3.2.5).
By the assumptions preceding the theorem I+G has a:cauaa_l inverse

on X or more generally on S(Q:;X), and that inveré'e.is locally bounded

(maps Eq'e -».,eq_'e), the theorem gu‘aranteeé that thé inverse is

globally bounded (£ q > Eq). An important cofolléry to Fhe theorem

preceeds from thé definition

. | lex,~6x, || L
S |~ 1 e
X 5 X,€ 'E.q 1720 q,2
lei‘lelqu*o

of the ingfemeﬁt:al gain of G € jjc(x). _

Corollary 6: For the equation

uy (W)-uy (w)mx) (w)=x, ()46 (W) [x; () 1-G(w) [x, (w) ]
with us, .uz € ' 5@“"0 S(2;X) .and G ¢ F(Q;';ﬂc) subject to the
additional constraint

upuy € €2 sm3x5_

a sufficigrit‘condition‘ tixat ) € Eq,!, N S(Q;X‘) is that a(R) < 1.
Proof: By. assumption (A1) above X,"X, € qu(l) and by the causality

of the inverse of I4G on X, x;-x, € éqe(z) N S'(:Q;X)‘. Moreover, causality
of G assures that X,7X, does not anticipate u,-u, and so that:‘xl—x2 is

well'-defined. as a solution of the equation. The remainder of the theorem

follows directly from the definition of a(2) and the equafion
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ntxl(w)-ngz(w)-wtul(m)-wtuz(w)-wfc(w)[wtxi(w)]+wtc(w)[vtxzan)]

along the line of the proof of Theorem 5. |

: , @
Remark 7: That Theorem 6 is a more stringémt requirement for a
system th#t Theorem 5 follows iﬁmediately from the observation
a(f) € a() for every G € F(Q; ;ﬂc) (éhoosé x, = 0 in the definition
of &(L)). Thus, Theorem 5 ma& hold and Theorem 6 nof. When valid,
.Theorém 6 guarantees that not only d§es I+G have a caﬁsal, bounded
-.it'iverse on 'Eq’ I but also that the. inverse is con_tin‘hous’. This
property is essential in the sequel. .

Let - @ be the fixéd set'Rf.-,[O,w) (another choice is

Rt - [to,w) for some t, € R). Let (X,d) be a complete, separable
meztic space-of functions mapping Rf into R. Then with this choice
of B it is possible to identify F(Q;X) and S(Q;X)_ithat'is,.all
elements of F(Q;X) are for each w elements of.S(Q;X);v:he opposite
;hclusion holds by definition). -Moreéover, for the t&o functionﬁls.

mentioned earlier

2, (£) -'r |£¢t)|dt, fex
| 0

C2y(6) = ess sup -|£(t)|
£ tert ‘

the spaces Eq(Q;X;Zl 2) are Banach spaces.
: . k ,
In the next two sections below specific choices of the space

X (as the set of continuous funétioné, and as the set of piecewise
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con;inuoue functions) permit the use of bounds on the space 25(22)
to make rrohorov's Theorem applicable to certain feedbakk systeﬁs.
Theorem 8 here is intermediate in this process.

Recall from séction 2.4 the definitions of the Prohorov'topology
and the definition of totally L—bounded sets of random vatiablea.
Assume that (X,||+||) 1s a Banach space. For H ¢ ,JQ(X) define

the norm of H on X (distinct from the norm of H‘as an operator on

Eq) as
0#xeX x

and let X, = {e:r" > R ¢ mfe X} be the extended space associated
-with X.

Theorem 8: (Deterministic plant) Consider ﬁhe equation on S(0;X)

u(w) = x(W) + Glx(w)]
where

ue s(sz;X), Ge A_x)
and the existence of a solution x € x such that ﬂtx € S(Q,X)
is assumed. Moreover, assume that the set of disbkributions

{u } + induced by u on 19(X) is relatively compant, then a
ﬂtu teR
sufficient condition that the set {uﬂ x}teR+ Be felatively compact

t
is that

(1) p(6) < 1

() (46) 7 e Y
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Proof : cOndition (1) assures that the solution x(w) is an element

of X for évei:y w € Q. The argument is familiar
Tox(w) 'ﬂtu(w) = "Gl x(w)]
[ x@ || < Hru@ || + [mGlm x|
< lu@]] + 0@ | |m x|
Thus,

||1r.tx(w)|| ‘ [l-p(G)]-]'Hu(w) I for every t € R+, :

w €
and the conclusion is immediate. That x € S(Q;X) is aions’eqnence

of the facts that 7 _x € S(Q;X) for every t, and x = 1lim T Xe

t
| | A g0
‘Again using the causality of G, for every t € R*, 3 ¢ R

B x(w) + m.6lm x(w)] = ntu(w) .
Hence, for any A € f(X)

Plw : ntx(w) € A}

= P{w

‘ 4
ﬂtﬂ"'Q) ‘[‘Ntu(w)] € A} .
a P{w : Tuw) € (146) 1A}

Where (I+G)-1A £ ﬁ(X),_ since (I+G)-1 is continuous on X. Thus,

the formula

by 280 = by o[ (4671

follows from the above equalities and the definition of induced

distributions.
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Let {tn}nrl be an increasing (unbounded) sequence of elements

}G

a=1’ Let f be any element

of RV and consider the sequence {uﬂ‘rx
"

. n -

of BC(X),‘the bounded, continuous functionals on X, then

fu, | 1+ lay)

tn |

Ix f_(y)u“

vz*(dy) = Jx

t -
n

'f fI(I+G)ylu, dy) .
X

-t
n

Since I+G is an element of ,ﬂc(x),'the function £[(I+G) ()] : X+ X
is an element of BC(X). Moreover, since the set {u_ } .4 1is
4 ﬂtu teR

assumed to be relatively compact in the weak topology, there exists

y ' . ) © ) © :
a subseguence (unbounded) {tn'}n'-l c {tn}n_l such that the

subsequence
. ' w ,
{J EL(4Gy I, - @y) | oy
X t_,
n
converges. Hence, the original sequence {U" x}n:I has a convergernt
. ¢ |
n

subsequence. The arbitrary nature of the set {tn}nzl leads to the

T Xt

eR+-_1s relatively compact.
t .

QED

desired concludibn that {u_ _}

In other words the theorem sayé that on the function space X,
totally &bounded (stochastic) inputsvgivé rise to totélly L-bounded
outputs if the (deterministic) system operator I+G possesses a bounded,

continuous, causal inverse on X. Boﬁﬁdednessfof the signals is not
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the usual notion of boundedness in norm, but a more refined concept
defined in terms of the distributions induced on X by the signals. .
Although it may be considered as a rather direct conseguence
of Topsée's Theorem (section 2.4) Theorem 8 seeves a number of
purposes. First 1t unites in a simple way the Prohorov theory of

convergence and the detemministic operator stability theory to give

‘ 'interesting results for stochastic systems. And it executes

this union in such a way as to make directly applicable the_deter-
ministic stability criteria (at least in their incremental form)

to prohlems inlthis setting. Secondly it again establishes_the
invertibility Of»operators as a key:tool in the.cless of ptohlems
being_considered here. In this way Theorem 8 is the analog of
Willems' result (Theorem 2.2.2). Corollarﬁ 9 below makes the Small-
Gain Theorem applicable in this general»setting'and:provides_the
link to explicit criteria based on this result. |

Corollary 9: Let G be an element of o, (X) and

||Gx -Gx~||
b & swp i 2o
: xl,xzex 1 72 '
xléxzﬁo

then the system operator I+G under consideration maps'totally'L-bounded’
inputs (u € S(Q X)) into totally L-bounded outputs (x'¢ S(Q X)) 1if
56) < 1.

Proof: Clearly p(G) < p(G) and so (i) of Theorem 8 is! satisfied. An

easy calculation suggested in the proof of Corollary 6 shows that
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(I-l-G)-'l is Lipschitz on x with Lipgehitz cbnstant [l-E(G)]-;
and, hence, is bounded and continuous. Cauaality of (I+G)-'1

is assumed, thus (ii) of Theorem 8 holds.

QED

Examples iilustrating the last four theorems are postpéned
until the sections following thiénéne.-aln the remainéer of this
- section the operator‘G defining the feedback system will be permiﬁted
to be random and the results from the latter paragraphs of section
‘2.4 used to investigate the system properties. Thuq;.let G be an
élement of ?(Q;_AL) and let u € S(Q;X). Assume that.G‘and u are

independent undernP. The properﬁies of iidefinéé by
(2) x(w) + G(w) [x(w)] = uw)

aré at issug here. Rgférring_toxseétioh'ZaB for comments on the
exiSCenée and measureability ofigoiﬁgioné to (2), ﬁhé assumption

of locally bounded solutidns w111 §s_p9q§1 be made.

Assumption (AZO: For the:equation;(Z) ;; is assumed that ntu € S(Q;X)

implies that m _x € S(Q;X). That is,:that boundéd, measureable

t
inputs (ﬂtﬁ)'give rise to bounded, measurgabie_ou;puts, at least on
finite intervals [0,t]. Boundeduﬁégns'iﬁ [+l on X.

| Tﬁis assumptipn imﬁliés'that for every w € 0, I+G(w) has a
locally boundéd inverse on Xe, and moreever, that thi; inverse maps

measureable signals (elements of S(Q;X))~into meaéureable sighals.

Now let-{untu}tek+ denote the disgributions indpcgdﬁby m.u
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on {(X). Put

{vﬂ;x<w)<->} - {u,,tu[<1+c<m>><->1}

The Borel meaaureability of C € F(Q;.,be) assures ;haf Vp ¢ € F(Q;PM(X))
.(recall this notation from section 2.4). Then from theaetremafks and
Theorem 2.4.11 the foilowing result gives a partialbdescription of x.
Theorem 10: For the eﬁuation (2) defined on the function space X,
subjgct to the above assumptions on G, let u € S(Q;X), then by (A2)

"X € S(2;X) for every t € Rf. Moreover, if 51(G)v< 1 where

) - Llew) tx,1-6 ) x,1]|
P, (G) = ess sup sup ~ ’
‘ well X)X, €K =y =x, ]
xl-xzﬁo

bhen x € S(2;X); and if the set {u }teR*.ié relatively compact,

m.u |

(as a subset of the metric space (PM(X),L)), then so is {Q" x(w)}
| : X
in the (w,L_) topology on F(Q;PM(X)).

Proof: Using the causélity of G(w) fot'eyety w_'
wtx(w) = ﬁtu(w) - wtc(w)[ntx(w)] '

Thus,

[ || ¢l lmeul] + |[7e@)In x@]1]]
¢ [l +8,66) « ||m x|

which proves that x € S(2;X) when combined with (A2) (establishing
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measureabiiity of the truncated\signals), using a simple limiting
argdment. . '
By a modification of the usual argument the condition Bi(G) <1

implies that'[I+G(w)]-; maps X into itself X (and is Lipschitz

u’te
ntt

continuous) for each w € Q. Let {p_ .} g+ De the distributions
induced on 3(X) by mu. Then using Theorem 2.4.11 (1) the conclusion

of the theorem follows.

Corollary 11: 1If Bz(c)'< 1 where

' ||G(w)[xi]-cﬂﬂ)llell
p,(G) = sup E ' 1
2" X)X €X { ]lxlflel R }
‘xl-x2¥0

then {u,’r u}'L—telatiVely compact implies thet {vﬁ <@} is relatively
ot _ '_ - Tt '
compact in the (w,LI)-topology_on F(Q;PMEX)) .

Proof: In Theorem 2.4.11 put _' " _ R

K= (1,01 e .
qED

The lack of symmetry in these results renders them provisional
in nature. In the next two sections this deficiency is avoided by
specializing the random operator G to be a-nonlinear convolution ia
a special form. The space X is also rescricted to be the contiouoos
_functions or the piecewise concinuous functions. In the general case,

however, this problem remains open.
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3.2 Convolution versus a Wiener Process:

In this-section.the general results of thé iabt éection are
teconaideréd for.a épécial'clﬁss of random operators formed by
copvolution’versus a Wiener érocess. Three particular'problems_
ére‘analyzéd heré: For a generai canolution versu§ a Wiénér
process sample properties are discussed and moment inequalities
derived. For a nonlinear convolution_equation moment bounds are
obtained for the solution and a condition similar to the Circle
Theorem (section 2.2) is used to guarantee the existence of an
invariant solufion distribution. Finally, as a corollary to the
analysis of the nonlinear case a linear convolution is-considgred
and a condition like the Nyquist Criterionvgiven”to gugragtee the
asymptotic invariance éf the solution distributions.-

Let w denote the usual real—valued Wiener process on R » normalized
so that w(0) = 0. The Wiener measure w is a probability measure on
(C(R sR), 13(0)) satisfying two ptoperties. For egch t, 8 € R" the

random variable_w(t)-w(s)-is normally distributed (on R) with mean

E{w(t)-w(s)} = m(t-s)
and variance:
E{[w(t)-w(s)-m(t-8) 1%} = o?|t-s| .
And for any finite collection of elements {ti}inl c k" such that
£, Kty 6 oun 6 tn <o the random variables w(tz)-w(tl),w(;3)-w(t2),

...,w(tn)-w(t#_l) are 1ndepéndént under (the measure) w.

For any Cfvalued random variable x on «, 7, P) let 'ﬁs't(x) c 7



63

denote the minimal Borel o-algebra over which x(r) is measureable
for r € [s,t]. Symbolically,

: -1
B = U xS Ben.

rels,t]
In particular let ﬁst(dw) .d'enote the least Borel q-algebré over
which w(r)-—w(q)' is measureable for s € r € q € t,

Bndow C(R+) with the metric (see section 2.4)

PP S Lo/ LM ST o)
. X,¥) = - s z = gup .
n=1 A+ fx-y n n te{0,n]

Let f be a continuous -functional ‘on' (C,d), and assume that the
measureable function g : R+ x R+ + R 1s a causal convolution kernel,

i.e., g(t,8) = 0 for s > t. Then the operator
ot | N
(6x) (t,w) = I g(t,s’)f-(s,(ws:t)(m))dw(s,w) '
o _

is well defined és'an'Ifo integral [40] on non-anticipating random
functions_'xve F(;C), 1.e., those for which 'Bét"'(x)v v ﬁot(dw) is
independent of ‘ﬁtm(dw) for éverjt e R, (Heré ﬁl v ﬁz denotes
the least Borel algebra containihg both ]31 and 132).'

Let u ¢ F(Q;C) be a-non—anticipating random functionvin the
above sense. As a special case of the general feedback equations

of the last section consider the following equation.

. _
(1) =x(t,w) = u(t,w) = J s(t.s)f(e.x(a;w))dW(S.m)
-~ Jo _ :



64

Theorem 1l: Conditions sufficient for the existence of a solution

X € rcn C) (with locally bounded second mements) such that _
'ﬂot(x) \ ﬁot(u) v 'Bot(dw) is independent of ‘ﬁ (dw) are

that

W lee,]% < a?@)]z]2, zer

(11) J g2(t,0)al(s)ds ¢ oo ;
0

See [55, Qhapter 3] where a mhéh more general exietence theorem
is proved using the usual Picard approximatiohs.

The properties of the mements of x are of fundamental importance
in establishing the ultimate 1nvariance properties of the distribution
ofo. The exietence theorem above guarantees that the first and
- second moments of x are locally bounded (finite on any,hounded interval
[6,T]). The next theorem gives a bound on the entire.halfeline.

Assume that f : R x R + R 18 continuous and that
|f(s,2)| & |a(a)] |2] , z €R,

for some real-valued continuous function a. Aasuming the hypothesis

of Theorem 1 the mean of x the solution of (1) evolves according to
E{x(c)}'-'n{u(c)} --f g(t,8)E{£(s,%(8)) huds .
Thebrem 2: (1) If
sup J [8(t,8)] |a(s)} |m|ds s a < 1
tekt Jo )

then
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sup  E{|x(t)]|} ‘ﬁ(l—a)-l sup E{|u(t)]}
tert tert

(11) Let E{u(t)} = 0, m=0, then E{x(t)} = 0, and if

sup OZJ- gz(t;s)az(s)ds €06, <1

tert 70 1
theh »
auﬁ ‘(E{xz(t)})llz € (1- VEI)-I sup (E{uz(t)}ﬁfgj

teR* teRt

Proof: (i) This part of the theorem follows éasily'from the

inequalities (assume m > 0):
" t | o
CE{]x(e)|} < E{Ju(e)|} + f |g(t,8)|E{|£(8,x(8))|Imds
: _ 0 : : C

. -t ,
< E{|u(t) |} + ] lg(t,8)| |a(s)|E{|x(s)|}mds

(i1) The first statement of this part follows frqm the Theorem 1
and the properties of the Ito integral [50, p.24]. The remainder of
(11) follows from | |

@O ¢ @l mnt/?

8(1:.8)f(a.:t(as))dw(s))z})l/2 '

¢ &b

-
0
+ods%nn¥@mn“2sw @&{x2(s)H1/?
.40 : 111414 SN
QED
It is-ﬁéa bounds on the second momént thét Corollary 2.4.8 is

used to establish the existence of an invariant limit (in distribution)
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for x. The remainder of this section will be devoted to a statement
and proof of this property for ﬁwo épecial cases of 1) corresponding
to ceftain restrictions on the functionél f in (1). The first result
below gives an improved momeﬁt bound for the nonlinearAcase undgr
tﬁese restrictions.

Let (1) be replaced by
) t= .
(2) x(t,w) = u(t,w) = J g(t-s)f (s,x(s,w))dw(s,w)
' 0

where g is now a time-invariant kernel and Theorem 1 is assumed to

be in force. Assume moreover, that

0<ac¢ .ﬁS%xEl §b<w " seR, & €ER

]

Theorem 3: Under the additional assumptions that E{u(t)} = 0,

E{dw(t)} = 0, for every t ¢ R" the conditions:
_ ;rog ) :
1) fé e g (g)dt < = for some T, <0
0 , .

(11) for H(r+jv) = f” e-rte-jvtéz(t)dt, and some r € (ro,O),
0

the exclusion below holds

-20"2%H 300 ¢ U m(eegv) 5 and
VER
rar -
[+]
-1 o 2.2, o 2 2
(111) sup [H7(eHV)+ - (@] > 3= 1°-a®)

VER
for some r € (ro,O);w

imply that sup, E{x(t)?} < Bsup. E{u(t)?} " for some finite g8 > 0,
ter” = eer* ; |
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Proof: An easy calculation gives

¢ , .
gz(t-s)E{fz(é,x(s))}ds

E{x?(t)} = E{ul(t)} + o2 [
~ 0

t

= E{hZ(t)} *f% 02(82+b2) j gz(t;s)E{xz(s)}ds

0
2 ¢ 2 ~2
+ o J g (t-8)E{f"(s,x(8)) }ds
0 .
where Ez(é,i) - fz(s,z) --% (a2+b2)z2 .

By (11i) %-62(a2+b2)ﬂ(r+jv) # -1, thus by two lemmas of Benes lﬁ?,
Lemmas 4,5, p. 32] the operator 1 +'% 02(a2+b2)ﬂ (H defined by (i1))
has a continuous inverse representéd-by the identity minus a con-

volution. Hence,
.2 Le? 2.2 2
E{x"(t)} ¢ (I + =5 (a™b")B) (Bu®)(¢)
2 [t -~ ~2 -
+ 0 I h(t-8)E{f“(s,x(8)) }ds
whére 3 is the function whose Fourier transform is i(jv) m

H(jv)[1+<gi'(az+b2)n(jv)] 1. An easy célculatiqn verifies

i

6,0 € 3 p2ad)a?
Thus,
s 2
B’ (0} ¢ (1 + S (a20D)m) @) (2)

+ 3 o’ 2-ad) J

h(t-1)E{x"(s)}ds .
0 o

Condition (iii) establishes
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sup'% oz(bz-az)ﬁ(t+jv) <1
by » )

and the conclusion of the theorem follows from the Lw—vereion,
of the deterministic Circle Theorem in Zames [75] (given in section

2.2). _
QED
Remark: Note that

H(r+jv) = If G(t+j(v—v°))c(r+jv°)dvo

where

G(r+jv) = fw e'rte'thg(t)dt .
0

And so, the criteria could have easily been stated in terms of
the r-shifted Fourier transform of -8 | |

The sufficienty of the following theorem is easily established
using the techniquee of the last proof.

Theorem 4: Consider the linear integral equation
x(t,w) = u(t,w) = ] g(t-8)x(s,w)dw(s,w),
‘ 0

then subject to E{u(t)} = 0, E{dw(t)} = 0 and Theorem 1, the

condition
02~fw lc(jv)lzdv < 2w
—o ,

is neceseary and sufficient to guarantee

sup, E{x (t)} €Y sup, E{uz(t)} for some Y.
teR teER :
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Proof: (Necessity) Using the properties of the stochastic integral,

the following equation is easily derived

2

_ t '
E{xz(t)} = E{uz(t)} +0 f gz(t-s)E{xz(s) }ds.
0 .

Rewriting this equation as

¢

y(t) = z(t) + [ h(t-8)y(s)ds

0
vhere the L“-boundeAness of y is at quesﬁion, ;he conclusion (both
parts) of the theorem follows from a resuit of Dﬁvie [11] and the
observation that y 1s a continuous function on the halféiine gf which
follows from Tﬁeorem 1. |
QED

By futther'spécializing ﬁhe input process u it is pqssiblg to
use the ctitéria of Theorems 2 and 3 to establish the asymptotic
invariance of the solution distribution. | l

Theorem 5: Consider the integral equation
3) x(t,w) = u(t,w) - J g(t-8)f(s,x(s,w))dw(s,w)
- 0 ' v

subject to the existence condition of Theorem 1. Assume that u-

and v are independent, E{u(t)} = 0, E{dw(t)} =0 énd, moreover,

that the proceés u satisfies the Lipschitz condition
,2 - o .,
Iu(t,w)-u(s,w)l € Y|t-s| s Y>>0, t,8 € R

almost surely (w), and the moment bound E{uz(t)} < 62 < ®, Then a
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necessary and sufficient condition that the solution x of (3) be

totally L-bounded in (S(Q;C),L) is that

-E{xz(t)} € u2 < o, t € R+ .

for some constﬁnt a > 0. Moreover, if u is stétioﬁary then x is
asymptotically stgtionary Qith respect to u énd the increments of w.
Remark: Cleafly then Theorem 3 gives a sufficient condition for the
distributions.of x to be bounded (or ultimately invariant) for nonlinear,
conic functions f. Theorem 4 gives a ﬁecessary and sufficient

condition in the special case of linear, constant functions f. Both
criteria are stated in terms of the Pourier :taﬁéform of g, gn& are

thus subject to the uéualvdesign interpretations used for feédback
systems includiﬁg a linear, time-invariant,_cdnyolution operation.

Broof of the theorem: The proof is based onm-a lemma of Ito and Nisia [41]
stated as Coroilary 2.4.8.abOVe. It folloﬁs the patﬁern of a similar
proof in [41). The verification of the hypothesis of that lemma pro-
ceeds in three steps, ﬁhe first ahqwiug that the solutiqn xoof (3):13
totally L-bounded. B |

t

Lemma 6: Let the kernel g be locally Lz, that is f lg(r)lzdt < o for

8
t, s € K+; then there exists a constant n = n(e,T) such that for
any € >0, T3>0,

P{lw : sup [x(t,w)[ >nl<e, for eﬁéry's e R
s<tgs+T

Proof: From the definition of a solution



71

. . t .
x(t) = x(s)+ui(t)~-u(s) - f g (t=T)f(T,x(T))dw (1)
' 8

8
- ]o [g(t-1)~g(8~T) 1f (T,x(T))dw(T)

And so, setting

S= sup Ix(e)|
.88t&8+T

the inequality

S € Ix(s)' + |u(g)| + sup fue)|
' s€t<s+T

Tt , _
+ sup .If g(t-r)f(t,x(r))dw(r)l
s‘t‘s+¢ -] ’

+ sup IJ (8(t-T)-g(s~T) J£ (T,x(T))dw (1) |
s€t€s+T ‘0 . _

SV+W+X+Y+2
follows. Thus

P(S > n) € P(V > u/8) + POW > n/5) + B(X > n/S) + P(Y > n/5) + B(Z > n/5).

Now

P(V > n/5) € % (E{kz(s)})l/z‘ p -5%

' .
_ o 58 _
~and P(W > n/5)s¢ n in the same way. The analysis of the next three
terms 18 somewhat more delicate. From the Lipschitz assumption on u
Jute,w)| € ylt-s| + |u(s,w)]

Hence,
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sup |u(t,w)| € YT + |u(s,w)|
SEt<S+T .

and so, for nr> 5vT
x> g-} ¢ P{|u(s,w)| > -% - yT}
. £ _é'L .
n=5yT

For Y and Z consider the following

ST '
P{Y > n/5} ¢ ozcﬁbzbz sup j gz(r)E{xz(t&t)}dr
sEt<SIT '3

, ST
£ czuz (--5-)2b2 I gz(r)dt .
n 8
Similariy, for 2

| . |
P{z > n/5} ¢ 02(%)252 j [g(t-1)-g(a~7) ) 2E{x? (1) }dt
| 0
- " BT
¢ 400232 f g2(ydnr .
| n o, |
Therefore, the bound for n ">5y'r
5 o 58 5.2 ézbz S ,
P{8 > n)¢ ﬁ'£a+8) fi - + Scﬁ)‘ ca Io g'(r)dr

holds, and clearly for any €, T > O an n may be chosen suffiéigntly

large enough to imply
P{s>n}l<e

QED <Lem§ 6)
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: The second step in the proof requires verification of the
following lemma.
Lemma 7: There exists a constant £ = £(m,T) such that for every

t, v e [8,8+T] the foilowing inequélity holds (almost surely w)

sup  |x(r)| € m} € E|e=v|?
s<rgs+T '

E{[x(t)-x(v) |

if for every 8, T ¢ R+

: ' t
lu>= sup <%j g?man? < =
0£t<T 0 "

S8, = swp fv [g(e-v-1)-g(1)]%)% < =
s<vEt<s+T 0

Proof: Again express the solution to (3) as

_ _ ¢ ‘ |
x(t)-x(v) = u(t)-u(v) - f - 8(=T)E(x(1))dw(T)
v

- f: [8(t-T)-g (v=1) I£ (x (1) )dw(T)

where the afbitrary asgumption t 3 v has been made. Using
(e+d)4 € 8c4+8d4 and the pointwise assumption on d,_ﬁhe following
obtains
E{{x(t)-x(v)l l sup Ix(r)l £ m}
 8<res+T
< BYzlt-vlz

+ 64E{(J g(t-r)f(x(r))dw(r)) sup Ix(r)l £ m}
s€r<as+T
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+ 64E{(Iv [g(t-'r)-g(v-‘r)jf(x(‘t))dw(‘t))4 _8sup |x(r)] < m}
0 8€r<s+T

=X+ Y+ 2,
Now

t ot | - | 9
v - || g ce-ngteme (e xunadmado)
vy

vhere E_ includes the conditioning sup |x(r)| € m. Thus,
_ ™
s€r<8+T :

t . ‘ '
Y < 64 o"bl'ml'([ g2manl ¢ 640 ba*s) (a+1) [£-v|?
v : '

By similar arguments
z < 6aa‘m‘b"(r [8(t-T)-g (v-1) 1 2d1)?
: 0

< 6434m4b462(s,r)]t-v|2

where 61 and 62 are given in the hypothesis of the iemma. Choosing

£ = 8‘y2-+ 6ao‘b“m4tsl(s+r)+sz'<s,r))

- satisfies the ééséftion ofithe lemma. )
QED (Lemma 7)
Next the assertion that the solution x of (3)"i§ tota11y L—ﬁoundéd
is verified;i _ , ‘. _
' Lemma 8: The conditions of Lemmas 6 and 7 imply fhétii is totally
L—bounded.'. ‘ |

Proof: Denote by 68 the shift operator
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(Gsx)(t) = x(s+t),

~ and by (')+ the function (r)+ = max (r,0). Using Lemma 6, define
the constants hk-a n(e(k),T(k)) = n(Z-k,2k+T), then
P{ sup |9 (x(t))l < nk
~k-1<t<k

= p{ sup Ix(t)l < nk} ¢ 1-27%

(s-k-'r) St<s+k

Let the function £ in Lemma 7 define the constants

Ek = E(nk, 2k+t), then from Lemma 7 for t,v € [(s-k)+,s+k]

E{lx(e)-x(v)|“|  sup Ix(®)] ¢} < g fev[? .
(s-k—t)+€t£s+k . ' o

Define A c C(R) as {h ¢ e sup Ih(e)]| ¢ “k} , then
-n=-TSt€n -

E{lcésx)(t)-(esx)(v)l4 6,x € A} < nk];-vlz

 and the conclusion of this Lemma follows from Coroliary 2.4.8.

QED (Lemma 8)

‘The remainder of the proof of the theorem follows frbm the
léét lemma. vLetn(PM(C),L) be the set of probability measures on
c®h;Rr) equippéd with the Prohorov metric. Then frémﬂLemma 8 the
induced distributions {ue }seR+ on'(C(R+) $(C)) is relatively compact,
By the Lipschitz assumption on u the set {ue u} eR+ 1s telatively compact,
and setting (6 w)(t) = w(t+s)-w(s) it is easily ahown (using Corollary 2. 4 8)

" that {ue } is relatively compact. Recalling the fact that the direct
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product of (relatively) compact sets is (rélatively) compact, then

the set of distributions {us}seﬁ induéed ol (CXCxC, B(CXCxC)) by

(Gsx,esu,asdw) is relatively compact. This establishes the first--asser-
sion of the Theorem.

. Now using‘the fact that Gsh is céntinuous in-(s;h).oﬁ R ¥ C(R*)
(for thé metric d), the function p(‘)(A) is ﬁeasurgable on R+ for any

8¢t A ¢ .13(CxGxC). Hencé, the functmoniééftt)

1pt
\)t(A) H'Efo us(A) ds

is éontinuoﬁs on R’ for any A as above.

Since‘the'sét {"s} is relatively compact, bf Ptohor@v‘g Theovem
(Theorem 2.4.2 here) for any ‘e-> 0 there exists a compact éubéet
K(é) c (cxcxc)(Rf) Vindependent of s € R+ sucﬁ that ps(K) y l- ¢ and

therefore such that vt(K) > 1- € for evéry t € Rf. Thus, the set {vt}thf

is relatively compact, and there exists a measure % € PM(CXCXC) and an

e T Vo or equivalently in
n

1pcreasing sequence {tnf:al such that v
the L-topology.
Let (é,&;ﬁy be the (CXCXC)(R+)-va1ued random variable whose prob-
,ability law is v, - It remains to show that |
W @D = W R
(11) <X is stationarily correlated with respect to (ﬁ,i),_
and (111) % = @ - G% |
Point (1) follows from the stationarity of u and‘Of the 1ncfements of w.

To show .(i1) consider continuous, bounded functionhls 41'¢2’¢B
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on Rk; Rm, R" respectively and the series of equalities

B (X, ppseee ’x: +t”’2 (Bprppreee '“t;+:)"’3(wt'l'+t bt ",'t_;«l-t)}

1 1l
k n }

m ~
a1 wz( §+t+s) i=1 "’3_(w z+t+s =1

+3)p=

.= lim

T
ds E{y, (X )
o . IO 1 t +t+s

_ 1 [ Trett - - .
® :ﬂ‘ T, L - ds E{-wl(xtiﬂ}- '{'2‘":54-8) l1’3(""t:§:+s)--}

Ty

= lim -%
r+= “r |0

= E{wl(itl,...,i

ds

) wz(atlo-"’iti) w3(§tno~-';;tu)} .

S Y n 1 n

* ‘Here the third equality follows from the symbolic decomposition

Tett f Tt 4 J Tg+t- f t
[ 5 - roeE o[
"t : .70 : Tr 0

and the boundedness properties of (X,u,w) oveg‘finife intervals. Th;t this
series of edualities for all ¢1Qw2,w3 determines:the properties of

the finite dimensional distributions of (x,uga) is fundamental see
Gikhman and Skotokhod {29, Chapter 3].

To show (iii) it suffices to show that for every s_ex[O,t]
(111) ' X(t) = %(8) + u(t) - u(s) - Cx)(t) + (Gx)(s).

An argument used in Ito and Nisio [41] may be appliéd diréétlyuat this

point to yield the desired conclusion. ’
~QED (Theorem 5)

In the event that the function £ is linear (f(z) = az, a > 0)

Theorem 5 may be sharpened using Theorem &4 to prOVe;
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 Corollary 9: Por the linear integral equation
x(t) = u(t) - a J-' g(t-8)x(s)dw(s)
} 0
subject to the assumptions on u, w, and g expressed in the hypothesis of

Theorem S, a necessary and sufficient condition that the distribution of .

X be ultimately stationary is that

4) a%s? f 'Ic(jV)lz‘dv < zn’ .

- 3.3 Convolution Versus a Levy Process:

The most immediate modification of the integral,equation investigated
in the last section is to consider the.conyolution operator with the
Wiener measure replaced.by a Levy neasure, representative of the most
general ptocegs'with_independent increments. As‘is well-knoﬁn [29] the
Levy process has sample paths with at_most countable jomp discontinuities
in any finite interval. Moreover, it may be decomposed into a linear

'combination of a Wiener process and a general Poisson prOCess. In a feed-
back system jump process may'be_considered as models of random shock .
phenomena and beVy process models as descriptive of combinations of con-
tinuous and shock random signals. It is therefore appropriate to review
the properties of such processes, whose sample paths are quite different
from those of the Wiener process and its transformations.

Let {E'}‘» " be a set of independent, identically distributed random
variables on gome probability space «, :? P) Assume that the distri—

bution function of the E is
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: : ) 1l - e--A(x s a> 0
Po(w =Pl £ (W) <al= |
€ - 0 3 a<0
where ) > 0. Note E{gn} =\ . Let Sn(uD = -_E'Ei(ub
- o B S
then the dietribution o'f.Sn is

o a-1 Kk
-X Qo)
1-e 2 Y]

a>0

Fn(a) = v
0 ' s a<O0 .

A Poisson process x(t,w), t € ﬁ+, ® £Q, may be defined via
max{k: S, (w) <t} , S (w) =0
kY = 0
X(t.w) =

©, if S, (W) <t for all k .

Note that x(t,w) = n if and only if Sh(w):; t and”$n+l(w) > t. Thus,

the induced dietribution of x is

 n) %')— e 5 ae0,1,2,...
P{w: x(t,w) = n} - = | |
0 s . n =00 .

From this expression E{x(t)} = At, E{(x(t) - Xt)z} = At. .Intuitively,
the Poisson process represents a quantity increasing by unit jumps
occuring at random instants of time.

A somevhat more general process which accounts for random jump

amplitudes is defined as follows. Let {ﬂkf;;l'

be a set of independent,

identically distributed random variables with commonVdistribution'functien

F, (o) = P{w: n(w) < a eR} . Let x be a Polsson process defined as above,

1ndependent ‘of the Ns and governed by parameter x> 0. A compound
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Poisson procees_y may be defined by the expreseion
o x(t,w) ) : o
y(t,0) = n @ 5 x(tw2 1
o kel T ' A _ :
0 3 x(t,w) = 0.
In words5y(t,m) jumps by nk(w) at the instant that x(t,m) changes from

k-1 to k. The distribution function of y(t) is determined as {36]

Qn) (o)

By (@ = Plor y(t,0) ga} = 2

g(n) - ~Qn-1) *F

where and F(l) = Fn (* denotes convolution).
Continuing the reasoning of the previous sections, the paragtaphs
that follow define an operator capable of describing the presence of
"random shocks"in a feedback system. The asymptotic properties of such
systems are then analysed using this operator. |
Let (x, 1B(x)) be a measureable space and consider the random-
neasure on’ ﬁ(R )y % 78(x) denoted by v([s,t].A),: [s,t] c R , A ¢ ﬁ(x),
as expreseing_ehe-number of events in the set_Aﬂduring the interval [s,t].
Assume that:hthe random variable v takes on.non-negaﬁive values'independent
on disjoint sets from 15(ﬁ+) x B(X). And for each set [s,t] x A e &) x&X) ,
assune that v([s,t],A) ie~Poisson‘with parameter £t n(t,A) dt ; i.e.,
t - ot |
Plut v(w,[s €1,4) = n} =, ( meom d)" exp(- [ nGne).
| Here N(t,A) is a probability measure énr #(X) for each ﬁ e.Rf, and a
measureable function KT + R for each A€ 13(X)
It follows that the random process Vv 1s a process with independent

increments (on R+); so the stochastic integrai
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t . .
f [ Cmx)  Wdi, dx)
0 X

for non—antiéipatingfandom functionals z‘ on R+ xX éuch'that

t k _ _ ' . +
: EIR«(Tox)I H(T:dx) dt ) k = 192; tekR,
0 X . '

is well-defined as the usual limit of Riemannsums, see also Ito [40] and
Gikhman and Dorogovcev [28].

t - Lo _
Let v(t,A) = v([0,t],A) - [/ Tn(t,A) dt , then the following hold

. t ' . '
@  E{ [ j 2(g,%) Vdg,dx) } = O
_ 0 ’x ‘ '

gt gt
)y s{(f [ 2(1,%) Wdr,dx) ) )= [’* f B[00, |2 Mrdn) dr
| e Ux o Ix

Now let the ﬁro'cess x be ‘defi‘.nv_ed' on R+ x Q- into X as a non-anticipating
(ﬁOt(x) Vﬁdt(v([o,s],-)) is independent of ﬁtw (y(ts,t],-)) ) . func-
tional of V. Let H be an operator on X—Qalued non.-a'ntv:lc:l.pat:lng random
'funétipn‘s behaving as follows: if the "imput" to H at time t is x(t),

then H causes a displacement of x by

t )
' I I h(g,x(%),y) v(dg,dy)
) X ,

over the interval [s,t] c. Rt. Here h is some (continuotis) function
mapping R x XxX *'i, o B

Recalliqg' the déf_initions of the last section, the remainder of this
section 1is dgvoted to an ‘anaiysis of ﬁhe‘ integrai equation (1) below aé

a model of a _stoéhastic system with unity feedback (here ﬁhe spacé_ X =R).
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(1) =(t,w) = u(t,w) - J g(t-8)f(s,x(s,w) dw(s,w
. , , ‘ 0
ot | e
- I g(t=s) [ his,x(s,w),y) v(w,ds,dy)
0 R .

From'Skoquhpd [55] the following exiatencé theorem gives conditions under

which the equation (1) is well-posed.

Theorem 1: [55,Section'3.3] Assume that:the funckibn#lu,g,f,h satigfy
the following conditions: | | |
(1) u(@)‘for each w € Q has only finite jump diséontiuuities (u is
real-valued), and E{u(t)z} <o fort e.[O,T],'T  finite.

(11) There exists a K < © guch that for all t € Rt
t 2 ’ o ) 2
j |g(t-8)|° |£(a,x) - £(s,y)|" de
0
t 5 : .2 : -
+ f |g(e-8) | [ |h(s,x,a) - h(s,y,a)|“ N(s,da) ds
0 A R O a .

h le'YIZ ; X,y eR.

(111) There exists a K < ® such that for all t € R’

t ‘ : - o
I |g(t~a)|[ |n(s,x,y)| N(s,dy) ds < K(1+|x|). = ¢ R.
0 _ R ‘ S

Then a solution x of the integral equation (1) exisﬁs, is locally bounded
almost surely, ahd has only jump discontinuities.'Mdfeovet, if

sup E{u(t)z} < @, then sdpv{E{x(t)21-< © for any T e RT. The solution
0<t<T © OSE<T |

x is unique at all points of continuity.
Before proceeding to the analysis of the nonlinear equation (1) con-

sider the linear case (corresponding to f and h linear)
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t t

g(t-8) x(s) dw(s) - I

s(t?s) X(s)'I h(y) v(ds,dy)
0

@ x(e) = ue) - |
: R

0

" where |
E{dw(t)} = m dt
E{(dw(t) - mdt)z} = 02 dt

E{w(dt,A)} = T(A) dt

E{(v(dt,A) - M(A)dt)?} = M(A) dt.

Assume that u, w, and v are 1ndependent processes. Then clearly, assuming
Theorem 1 holds, -

¢ t

E{x(t)} = E{u(t)} - [

g(t-s) E{x(s)} m ds - [
Jo ' _,

g(t-s) E{x(s)}/h(y)N4dy)dt -
0 : R

Hence, _
Theorem 2: Assume that g € Ll(R+) and let G(8) denote the Laplace trans-

form of g.'Then‘ E{[u(t)|} <. » dimplies E{|x(t)|} <= 1f and only if

Camhine U e
- Re(s)ert

vhere -?r-;f BIEy) .
R

Now conmsider the problem of bounding the secohd moment of'x. An easy

transformation of equation (2) gives

t . o t
g(t-8)x(s) [m+r)ds f'f' g(t-s)x(s)dw(s)

(3) x(t)_- u(e) - I .
o 0

0
t : _
- I g(t-8)x(s) I h(y) v{(ds,dy)
where dW(s) = dw(s) - m ds and U(ds,dy) = w(ds,dy) - N(dy)ds.

Assuming_ncw‘the'coﬁditions of Theorems 1 and 2, the following holds
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_ - t t
x(t) = (G u)(t) - f

E(t-S)k(s)'I' h(y) V(ds,dy)
0 ‘ | _

5(t-8)x(s)dW(s) = f
IR

0
where G, is the linear deterministic convolution whose kernel g8, has
Fourier transform G, (Jo) = [1 + (mﬁ)c(ja)]’l and the kernel g has

Fourier traneforﬁ E(ja) = G(joocl(ja). In this Case.
tpt . ' ”:'~2 a2 4

J gi(t-s)gl(tdr)E{K(s)u(r)}dédt + I% g (t-8)E{x(s)" }(o"+mds
0 - - 4 _

E{x(t)?} = [
0

0
from which the following is clear.

Theorem 3: Let‘g € L (Rf), and assume that Theorems 1 and 2 apply, then

sup,_ E{u(t) 2} ¢ w implies sup E{x(t) } <= 1f and only if
ter : . "~ teR

W ca+dlgne U e

. _ Re(s)eR’
and (10) |[l], < G+ HVF
OrAeqdivalently,_ ’
2 L |
(11)° I G(ja) A
‘[:”I 1+ (7 + mGc(ja) da <_2w(n +.c‘) .

As an illustrative example,consider the linear -.convolution represented

by G{s) = k/(s+P) , then

f” I'i??TYééx%TE(FETl -z;<;5;<;§§" .

Hence, sup E{x(t) } < Bsup. E{u(t) 2}  for some ger 1f and only if
' teRt teR

- (U +ﬁ)(m )
2(ﬂ +0 )

< P.
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" Two sufficient conditions were proved in [66] for a special case of
(2) (corresponding to Q e 0); these may be modified to apply in this case,
and they yiéld conditions more easily checked for a_given kernel g than -
the criteriai(ii) or (ii)' of Theorem 3. . | |

Cotbllagz 4: Assume that g € Li(ﬁ+). Then for equation (3) sup, E{x(t)z} ,
' . _ : teR '

<B sup_ E{u(t)z} for some B € KT 1f there exists a Y € R such that
o+ =
(1) —— g0 < 1 ,
T 4y

(11) and either of the following'conditioﬁs is satisfied
“t(a)  (m+ m/y > 0, and the Nyquist locus "Lj G(joD‘ lies inside

. v . acR . .
~ the circle centered on the real axis of the complex plane

at 6%/7’1,jd) énd pasé;ng‘thrOugh the origin.
(b) -1 < (m + M /y < 0, and the Nyquist locus \g) G(ja) 1lies

: _ : aeR :
inside the disc centered on the real axis at (57 -l,jO)vand

passing through the origin.

{e) (m +m /v <_-i, and the Nyquist locus ‘~} G(ja) does not
: . - oeR - v
intersect or encircle the disc centered at (%y l,jO) passing

through the origin.
Proof: By Theorem 3:it suffices to show that
2 A 1‘ e O o S 2 :
(0° +m)5— f |6(ja) /(L + (m +MG(Ja))|” da < 1.
Using the restrictions on the graph of G(ja), it follows that
(m + T)G(10)
1+ (m + ME(Ja)

(m + ﬁ)f(j“)' |2 <[+ Y(m+ H* re
1+ (m+ mMe(ja) . ’
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Thus,
2 ~ 2 ~ o .‘
(g +m g; o" +.1 1 G(ja)
2n I |1 @ + 7 G(ja) ‘ do S THFY 2T [” 1+ (m+ E*é(ja)
o2 +.ﬁ o~
" aw+y 8O

The last step using g € Ll(ﬁf); and the assumption that'zero is a Lebesque
point of § [1, p.5]. |

QED

'The next result is a épecial case of Cbrollary 4as y 0.

Corollary 5: Assume that g € L (R ), then for equation (3), sup E{x(t) }
: tert -

< ﬁsup+ E{u(t) } for géie B € R 1f
teR ‘

1) m+ f> (o + B £0)

and (11) ReG(J) >0 for all a eR.

While Cbrollary 5 involvesva "passivity" property of the operat6£ G,
‘Cotollary 4 is reminiscient of the various "circie griteria" introduced
above (aections 2.2, 3.2, and‘Thebrem 6 below), and its primary use is
to provide easily verified conditions for mbmentvﬁouhds in the equationsl
being conéidered. That is, for ahy of the integral éonditions given above
(Theoren 3, Theorems 3.2.3 and 3.2.4)‘sdffiéi;nt'cbﬁ&itions may be derived
directly in terms of restraints on the kernel g rather than the quantitf

||§||i' appearing in the resui;s mengidned by using arguments similar to
those in the ﬁroof of Corollary 4.
Returning then to the analysis of the nonlinear eqpaﬁion»(l);-agsume

that
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E{dw(t)} = 0

E{law(t)]’} = cae

E{v(dt,dy) } = M(dy)dt
E{[v(dt,dy) - M(dy)dt]’} = m(dy)de
and that thefe exist constants a,b,c,d such that

0<a;f(t,x)/x=<=b <w; tg R*, xelR 3

0<c ;h(t,x,y)/x <d <oy t s'R+, X,y e R .
Moreover, assume that E{u} = 0 and that u, v, and v are independent processes.

‘Theorem 6: For equation (1) under the assumptions of the last paragraph

sup E{x(t)z}; Rsup E{u(t)Z} for some B d+ if
tert text

(1) There exists an r > 0 such that

IO exp(i'ot)l g(t)| dt < =,
(@) F o= Ny) <o .

=1 ‘ ) »
(11) {[-#(crd)/2),30' ¢ U 6
B : Re(s);-ro

(iv) For G(s) = G(s)[1 + -]é'ﬂ’f(c't-d)c(s)]-]' (see (111)) and 6,=8*¢,
theh o | _ | ' |
{GiP@2?) + w(EadNTg0) ¢ U &
. ' Re(s)»ro

(v) f’or some a €(0,1) and r € (O,rb)

-1 1
sup |657(s) + 5o
Re(s)>-r 2 2

2(a%4b2) + ficP4aD)]] > $ 10°®%-a?) + F(a-cD)
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and (vi) Por some T € (0,r,) and

H(eHE) = J‘” G(r + 3(E = EIG(r + 3E) .
-s” T FICE - ENr FIE) o

| then

%u(r + 38 #@ch S s

sup ; ———
1 + 22 (a%?) + F(PaD)E, (rr e

EeR

Proof: A transformation of (1) gives
| ' t
x(t) = u(t) - f

g(t-1) j 'Tl(t,x(t) »y) I(dy)dt
0

- Fii(cHd) f

t : t ) .
g(t-1)x(1)dt - [ g(t-1)£(1,x(1))dw(T)
0 . o .

t .- p o , ‘

- Io 8(e-D) L,, h(t,x(1),y) V(dt,dy)
vhere Vtdt,dy) = v(dt,dy) - H(dy)dr and ﬁ(t;x,y).--h(t,x,y) -'%(c+d)x
and ¥ is defined in cOnditioﬁ'(ii)._Let W(s) = [1 f'%ﬁﬂé+d)c(s)], then

by (i1i) and (iii) and from, for exéﬁple, (12}, W-l exists on Lm(R+) func-

tions. Hence, _
. e

x© = Go© - [ i, [ R mee
t t ) [
-[ S (-1 £(1,x(1)) dw(T) - f 3 (t-1) f h(t,x(1) ,9)¥(dT, dy)
0 o I |

where G the Fourier transform of g is,defined above. Thea téking into

account the assumptioﬁa_on u, w, and 7: ‘
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1. t e o
By} = B0 00} + B Io Ee=1) j £(r,x(0,y) Néy)do?® )

. | |
+ f 82(t=1) E{£2(1,x(D) }o? dt
o _

Tt 2 o
' [ Y R j E{n?(%,x(1) ,y) Mdy) dr -

Again adding and subtrécting the terms

t oy
_%02(82.,.1,2) I @m0 Ex(0?} dt
o

Li(ePea?) f g2 (t-1) E{x(0)?} a1

the result is
t

B2 + et @D ¢ D) [P0 e e

s E{.(W'lu)z(_t)} + E{( [ E(t-r)-r At,x(0)y) n(dy)d’r)z}'
) 0 4~

e |
e j g2 (t-0) E(®(1,x(0)} dr
0 ‘ '

where ??('t,x) = fz(t,x) - %(az-t-bz)x2 and hz(t,x,y) - hz(t,x,y)
_ A ! _ ,
- %(cz-&-dz)x2 . Setting K to be the linear convolution operator whose

Pourier transform is ﬁ(s’) = {1+ %—[oz(azﬂ:z) + ﬁ(vcz.-é-dz)]EZ(S)]-l s

where 62 (é) is defined in the theorem sta‘tement’,v-. and using (iv)
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@ Ex®? = KEE )z}m)

§(r-8) [ h(e,x(s) ,3) n(dy)ds) }

-00

: l t A | T
+ I E(e=1)E{( f
0 0

t oA Ha | -
et J' g(t-s} e{e?(s,x(s))} ds
_ o e

t . L PN o S '
v [ Caen [ siea@m) 1w o

«00

f‘)

where g is the kermel whose transform is G(s) = G(s)K(s) and K
Using the boqnds, ': '
|§2(s;x)|';,_ —{bz az)x2 " for every 6 e'ﬁt,
lﬁz(s,i,y)l < (d ~c2)x? ;'for every 8 e”§+, ye R,
and condition ' (v) it is clear that the last two terms in equation (4) are
' bounded by - o sup E{x(s) } Closer consideration of the decisive
 term (T2) secouo g;qéﬁe right of (4) will yield the ‘desired conclusion

Expanding the square

I - ~ . .
Io [0 g(t-8)g (1) f” ‘f” E{h(s,x(8),y)h{u,x(y),2) N(dy)I(dz) ds dy

< | IO "5"""’5“'“"10 | r eh2 s, N2 (B i) 1 PnianIn e dsey

0 :
S 2 1?2(d2-c2)( I, g(1-8) de)? sup E{x(s) }
: S o - . O<s<t
Hence,

S t -~ T - : .
EPELCA c2> [ R0l ¢ f 5(s)ds )2 sup E{x(s)’}de,
oot 0 Ocsetr
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And so, condition (vi) implies that
o _ | » D)
|T2| < (-0 sup Efx(s)"}
- KXY
and that the combined operator composed of T2 and the sum of the last
two terms is a contraction on the Banach space defined by the norm

1/2

[Iz|]| = [ sup E{x(s)?}] . The conclusion of‘the Theorem follows easily
s eR™

from this point using familiar arguments from the earlier sections.
. : -

While Theprem 6 may be regarded as a direct generalization of Theorem
3.2.3 (nonlinear convolutiou uersus_a Wiener process), the comparatively
.more complicatéd conditions (1)-(vi) of Theorem 6 would seem to preclude
the grephicei interpertation poaeible for the conditions of the earlier
theoren. No attempt will be made here to weaken Theoren 6 to permit such
an, interpertation. though the promise of such a proceduce is acknowledged.

In order to complete the extension begun in this section it is neces-
’sary to prove the enalog of Theoren.3.2.5 using Theorem'6)to prove asymp-
totic invariance of tne solution of equation (l)iunder appropriate
assunptions on u, w, and V. ﬁhilé conceptually no more difficult, the’
statement and proof of tne analog is technically nore'cdmolex becauseiof
the nature‘ofjthe sqlution sample paths ofvequation-(l)._Recall tnet.
the basic exietence'rheorem for this situetionn(Tneorem i‘here) adapred.‘
from (55] gunrantees only that the solution trejectories wiil be piece-
wise continuous. It is therefore necessary to diacuss weak convergence of
distributions on spaces of piecewiae continuous functions. Recall that in

'eection'z;a, it was rarher easy to determine conditions-for a set of
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distributions on the space of continuous functions to be compact by using
a modification of :he Ascoli Theorem {16] to characterize compact sets of
continuous functioas and Prohorov's Theorem (2.4.5) .

Néeded thus, are a topology on the set of piecewiae continuous functions
rendering them separable and complete (so that Theoreﬁ 2.4:2 will be neces-
ary and sufficient in this case) and a characterization of the compact
subsets in thia topology. Combining the work of Skorokhed [56], Billingsly
{71, and Stone [58] the necessary framework ia available. Rather than state
this technical structure and then prove the theorem,pthe result will be
atated,and the " appropriate elements of the theory of weak convergence of
measures on piecewiae continuous functions used in the proof atated as -

lemmas.

Theorem 7: Consider the equation (1) under the asaumptions
1) £ and h satisfy the sector conditiona with the parameters<(a,b)
. and (c,d) respectively.
(i1) E{dw(t)} = 0 and E{[dw(t)]?} = & dt.
 (411) E{v(dt,dy)} - N(dy)dt and ‘E{[v(dt,dy) - n(a‘y)d:]z} - Ny)dt,
iv) u, ﬁ;lv are independent, u is pieceriae continous (from the.
right) almost everywﬁere’(P), and E{u(t}} =0 ; E{h(t)z}eLw(ﬁf).

For a,t points of continuity (almoat'eure) of u and 1t €els,t]

E(fu(® - u@|Y2u@ - w2 M%) < yle-s]?
{v) The.kernel_g € Ll(R+) r\L;(i+). (Huch.leaa restrictive conditione
are possible here.) |
Then the criteriom of Theorem 6 is sufficient to éuarhatee the asymptotic}

invariance of the_aolution,procesa X.
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Outline of Proof:

Definition 8: Let D(§+;R) denote the space of real-valued fuctions on R,

which have a limit from the right and are continuous from the defe.

Elements of b(Rf;R) are bounded on compact intérvals, and for any
€ > 0 have at most a finite number of jumps of‘amplitude greater than ¢

in any bounded interval [7].

Lemma 9: [55,section 3.3] The existence Theorem l'implieé that x g»F(Q;b),

the set of D-valued random variables on Q if u € F(Q;D)r

Lemma 10: [55],[58],[7, p.115] A metric do exists on ﬁ(R+;R) such that
(D,do) is a complete, separable metric space.
This lemma assures that Theorem 2.4.2 applies in its full power on

(D,do). |
Lemma 11: [7] For a subset J of D(Rf;R) to be relatively compact (with
respect to dd) it is necessary and Suffiéienﬁ that fov every T € R+, and
partition {ti}I-1°f [0,T)

sup sup |£(t)} <=,

f€J te[0,T]

lim sup iaf max {lee)-£(8)| 3 t.s € t,,t, )} =0,
§+0 feJ {ti} 0<4<r , B S U5 | ’

where 0= méﬁ'{ti—ti-l

i _
This result is the counterpart of the Ascoli Theorem definigg compact

} "is the size of the partition.

sets of'continuous functioﬁs. The necessary convergence criterion (compare

Corollaries 2.4.7 and 2.4.8) is provided by:

Lemma 12: A subset A c P(O;D) 18 totally L-bounded if thé followihg_
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conditions are satisfied for any sequence {x }c A :

(1) The sequence {xn(O)} is tight

(11) For syt continuity points of x and any T € [s,t]
E{Ix (t)-x (T)I lx (T)-x (s)l } < pIt-e|2 ,
fora >0, B > 1/2, and some p > 0, all independent of n.

The_proof of the Theorem 7 then ptoceeds to verify the inequality of
Lemma 12 (11) along the lines of the proof of Theorem 3.2.5, the particular
values of o and B used are 2 and 1 respectively. The proof is, however,
tedious and somewhat removed from the mainvfoeus of this work and will be
omttted. |

"1§ the next section the propetties of the solutione of differential
eqauations subject to totally L-bounded inputs is examined; Conditions on’
the cofficients of the equations are found to guarentee-that the solution

is totally L-bounded when the driwving function has this property.

3.4 Differential Equations with Totally Bounded Inputs:

In.order to illuminate the results of theveerlier‘sections of this
chapter it ia worthwhile to condider them in the ueual settinglprovided by
stochastic differential equations. This’ aecfion consista of two distinct
parts. First a general class of nonlinear functional differential equations
is considered and conditions for L-total boundedness of the solution given.
By assuming the functional coefficients in thia equation to be memoryless

" functions the'solution becomesaa'diffusion (strong Markov process), and the
latter portion-of this section contains a few remarks on this case.

Following ilemingﬁgnd'Niaio [26] (see also Ito and Nisio [41]),
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consider the functional Stochaétic differential equation
(1) dx(t) = (a(mx))(t) du(e) + (b(m.x)(t)) dw(t)

where a and b are coutinuous functionals on C(R ;R) (the R—vaiued con-
tinuous functions on the negativo real line R , with the metric d 1ntroducgd
4in section 3.2); wis a Wieuor ptoceéa'on (% FP); uis a control to be
specified lator; aud . is the truncation opérator; An initial function
x_‘such that x(t) = x_(t), t ¢ R, completes the specification of the
equation; Assume the 1n1tiai function x_ is on element of.F(Q;C(R—;R)) .

Let U c C(R ;R) be the subset of the continuous functions satis—

fying the Lipschitz condition below: for £ ¢ U
N - SRR T
If(t) - £(8)| < y[t-8| ; t,s e R, £(0) =0,

for some comstant v independent of f£. Let Ur have the relative topology
induoéd as a closed subset of (C(R+),d). Let S(Q;Ur) be the set of u_-

valued random variéblés (signals because the half-line R' is the time set).

Proposition 1l: (i) Let PM(Ur) have the Prohorov tdpolog§; then PM(Ur) is
relatively compact. (ii) As a subset of F(Q;C), the C(Rf)-vulued random

variables, S(Q;Ur) is totally L—bouuded.

gggggz (1) It is easy to verify thau U, ,d) is a compact (hence compieoe

and separable) subset of (C(K+) »d). Part (1) follows from this observationA

and Prohorov ] Theotem (2.4.5 here). Part (11) 1s immediate from (1) or

from Billingsly 8 result (Theorem 2.4,6). '
. ' QED

Thus, the set of stochastic processes permitted as inputs io,in the

terminology of aection.2.4,tota11y L—bouuded, The Lipschitz conditiom,
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though severe, is not altdgether uncommon in the literatute dealing with”
stochastic control see for instance, Fleming and Nisio [26], and Fleming
[24] for some remarks on this assumption. It :ls a natural constraint in
the framework of the studies here.

A few assumptions are in order on the coefficients 1n (1) and on the
past condition X_. Assume |

) a,b are continuous on C(ﬁ+),d) .

(11) For £ ¢ C(R) , t R,

: _ o
la(E)(e) |+ [p(e) (e | [ |£(8) |[dK(s)

=;
for some measure dK, [ dK('s) <=,

(111) E{x () 4y < ¢, t <0, for some c<o .

(iv) ‘ﬁm:(u) v 8 mo(x ) v ﬁOt(dw) is independent of 'ﬁ C)
for every t € R .
Theorem 2: [26,p. 7831 Under assumptions (1) thrsugh (1v) above, equation
(1) has a unique solution x with locally bounded second moments,such that
+ , 4 -

x € F(2;C(R)) and By, (x) cﬁ_wo(x_) v Foew v ‘ﬁot(dw) for

every u € S(Q;Ur) .

83}

Let = {(x_,u,w)} the collection of triples such that X_ has the
same ptobability law as x_ on C(Rfﬁ , UE S(Q~U ), snd w is a standard
Wiener process. Following Fleming and Nisio [26], let 8 denote the generic

element of Z and let ¥ = {x : 8 € £} denote the set of solutions gen-

erated by-elements of Z.

Theorem 3: ‘[26,p. 787) The set ¥ is a sequentially compset subset of

(S(Q;C(R+)),L) where L denotes the Prohorov metric.
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Thus, for all admigsible inputs, the state x is cqndined to a compact
subset of the state space, in this case S(Q;C(§+)). Hence, using the same
teéhniqueé empld&ed in section 3.2, qu any element s of =, it is poss-
ible to show that the distributions of L the corresponding solution, are
convergent in the Cesaro sense used theré‘to an invariant distribution on
C(Rf). In Ito and Nisio [41] a rather more detailed treatmentAof equation
(1) 1s presented for the case whén'du(t) = dt, cotresponding in a sense
to an autonomous sttem. |
Though giving the desired analogy to the results of sections 3.2 and
3.3, Theorenm 3:was used for quite a differgnt purpose inV[26]. Consider
;he problem of selecting a control u from S(Q;Ué) to minimize the func-
tionél E{¢(x,u)} where ¢ is some poéitive (values in R+),cont1nu¢n8

fqnctioﬁallqn C(K+) x Ur (40int}y).

Theorem 4: [26,#.792] Let =, c £ be closed under t-sequential limits,

1
then there exists an element'sl € £ such that E{i(xl,ul)} < E{¢(x,u) }

for any other s ¢ E,. Here‘xi (x) is the sélution of (1) cor:esponding to
8, (s).

As a theorem in stoéhastic gontrol théory'thé aSove teéult.haé a proper
place as a préiiminary e#1Stence theorem; ﬁowevet,'it suffers from being
non-constructive and from requiring "total kn&wledgé“ of the:staterx.{The
existence ﬁrobiem in optimal'atochaatic control theory is in any case
véry difficult.aﬁd attempts to procee& beyond theoiema'of this naﬁure have
not been altogether éuccessful. Some recenﬁ work holding the promise of a
solution to the problem is contained in the papers_df Benes [3], [4] and

Duncan and Variaya [15]}, and the ccopprehensive survey of Fleming [24].
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In the present context Theorem 4 serves to illustrate the earlier
sections of this chaptef by providing an alternative application for the
mathematical teéhniqueé involved. Note that in the equation (1),Athe'

solutioﬁ x need not be a Markov process. The same observation holds in the

~work in the tefergnces [31,[4],,[15]. I1f the solution x is a Markov process,

the additional‘ﬁhthematicél'atrﬁctnre available has compgllihg‘conSequences.
In the remaining paragraphs of this section.éome of the iméortant aspects of
this base will be summarized. As most of the analyéis of»sﬁpchastic systems .-
has been done in this setting only a few of those results related to téis
research will be presented.

Consider the stochastic equatiqh‘(ali elements are real valged)
dx(t,w) = a(t,x(t,w))dt + B(t,x(t,w))dw(t) ; x(0w) = x,W), te K e -

As usual this equation is but a shorthand for the integral equation

t t

(2) =x(t)-x(s) = I‘ ~a(s,x(s))ds + f b(s,x(s))dﬁ(a) ; t,s eARf .

s 8 _
Here subject to the assumption ofAlipschitz'contindity onithe coefficient
functions & and b, and the‘assunptibn that .13(30) is independent of
anp(dw) a 501utioﬁ of (2) may be shown to exist as an element of
s«z;C(d+)); Moreove:. from the form of (2) it 1s easy'to gee that the
solutibn x 18 a Markov process. In fact x is a stroﬁg'Markov pfocess
(begins afresh #t random times, see Ito [39] or MEKganIISO]), and so is
a diffusion. | |

As a markov pfoceas the soiution x is char#cﬁerized by a ttﬁnsition
operator (ﬁynkin {19, Chapter 3]) P: R x R x R x B(R) +_R.:Here |

P(t,s,x,E) expresses the probability that at time t z R, starjing in
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state x, at time s € R (s <t), the solution x(t) :'l..a. an element of E ¢ B(R).
The following properties characterize P: |
(1) PFor every (t,s,x) € R x R x R,_P(;,s,x,y) is a probability
measure oﬁ BR). o
(1i) PFor every E ¢ ﬁ(!}), P(t,s,x,E) 15 a measuréable function of
t,8,x jointly'on the appropriate domain.

(111) For every (t,s,x,E) and r ¢ [s,t]

f(t,s,x,E) = I

P(t,t,Y-E) P(r,s sx’dy) .
R i

(iv) P(s58,%x,E) = 1E(x) for every s e‘R+. |

Condition (1ii) is the familiar Chapman-Kolmogorov equation for Markov
processes [19]. This key property qf P defines a two-parameter family of
operators on Lw(k), the bounded measureable functions mapping R into

itself ,accordin_g to the rule

Tt f(x) = f f(y) P(t,s,x,dy) .

»8 R
For those fuctions f for which it exists,tthe limit
T, - f |

‘L = lim —i—————

w T t-8
tis

defines the operator

WO = a0 @) + 5 bz(s.xi_) L

whose domain H(A,)) includes at ddast Cg(R;R); the space of functions
R + R, having compact suppost and two 'continnous derivat-ives._.See‘ for

instance [19) for more details.

On the set of probability measures on R (PM(R)) the transition
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operator P defines a second two parameter-family of operatéra’.’ for u € PM(R)
(Ut 'su)’(E) ‘- I P(t,s,x,E) u(dx)
’ R .
In a sense (ilhich may be made precise [19]) U may be regarded as the
adje:l.nt of T. Observe that U defines the evolution of the prob_abii:l.ty dis-

tribution of x, the solution of (2). That 18, 1if B is the distribut_:ion

of the initial state x(s), then U: s Mg is that of x'(t),v t >s, on §(R).
. ] . .

If P as a measure on {J(R) has a "derivative" (Radon-Nikodym [30})

with respect to Lebseque measure dy, then denoting this function by p: _
P(t,s,x,E) = f p(t,s,x,y) dy .
R

Moreover, the function p (which may be a generalized function if need be)

satisfies the equations, for 0 £8 <t

(3a) Asp = a(s,x) -g%(t.,s,x,y) + -%'- bz(Sfx)f a_g.‘(t,s,x,y')v- - —gg(t,s,?t,y).

ox
(3b) A%p = - 2lale,yip(t,s,x,7)] ._+-§.3_2_IP_211=_:1?.L(£.3_.3.&1 _ 3p(t,8,%,9)
t dy - 2 ay2 | at

*
Here A is the ' generator of Tt s and At is formally its adjoint. of
course (3a) and (3b) are the we&l-known Kolmogorov backward and forward
equations. The latter is &lso frequently called the Fokker-Planck equation.

Forj the (3b) the fundamental solution is generated by 'the initial condition

(6 = the Dirac function) p(s,s,x,y) = G(x-y) And for (3a) p(t t,x,y) =
1 (x) def:l.nes P(t,s x,I‘) for O < s < t.

Note that (3b) makes little sense unless theccoefficients a and b are
suff:lciently smooth. Equation (3a) has the obvious advantage that it applies

even if the coefficients are not well-behaved. Moreover, it is known [19]
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that if a and b are bounded and Liﬁéchitz (Holder) con;inuons*, and b2 is
eve:yvherapositive—defi@ite, then (3a) has a smooth,unique,fundamental
solution. This solution precisely defines the distribution of the‘proéesa
X coriesponding fo As’ starting from any initial dis:;ibution, according
to | |

(Ut ;u)(E) = I plt,s,x,y) u(dy)
> R

where p 1is the distribution (on B(R)) of x(s).
A modification of thia'conéept yields a means of solving arbitrary

equations of ﬁhe form

4) Au du , U(8,X) = f(i).

s ° Bt

That 1is, since Et’zf(x(é)) = I p(t,s,x,y)-f(y)-dy (Et’xE_is the

R
expectatioh‘of € conditioned on x(t) = x), then.clearly u(t?x) =‘Et’xf(x(s))
_ "éolves" (4). See [19, Chapter 13] for ;oze details. Takiné into account '

' thejinterpertationa afforded by fhe etééhagtié differential gquation for
X, this aolﬁ;ion_method is more than a téutolpgy.

The problem corresponding to the analysis of the past ﬁhree sections
in this aeﬁting is to study the behavior-of éhe function p(t,s,x,y) as a
solution of (3a)ias t-s approaches infiﬁity, In othé: thai=specific
instances this ahalysis uses ceftain aﬁxillary functiqné with properties
similar to L&apunov functions. For the caaé of time-Varyinglcoefficien;s

(a and b) under consideration here the best result is due to Il'in and

Khas'minskii [38]:

*See [59] for an analysis of equations with.less restricted coefficients.
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Theorem 5: [38,p.248] Let p(t,s,x,y) be the fundamental soluﬁion of (3#)
for t > 8. Let V(t,r) be a posiﬁive function, ;onotonically'decteasing
with respect to t,,gnd nondecreasing wi:h réépect to r,;‘o, such that fér
all s | |

_2 |
(1) aems,x RELED 4 142 0 2VEID
' 9x

(11) V(0,r) >1 ; >0,

(111) [ V(t,r) dt < ®» ; > 0.
Rt _ =
Then for every measureable_function £, I p(t,s,x,y) £(y) dy + a ,
. R

as t-s + », where @ 18 a constant and ¢ > 0 1f £(x) > 0.
Probf: Put

u(t»X)A' I' P(t;é’xvy) f(y) dy |
R

in Theorem 3 of [38] and the eesult follows.

Corollary 6: [38,p. 255] Let a(t,x) be bounded for all x é R, €>s, and

a(t,x) + xb(t,x) < -g < 0 , then the conclusion of theorem 5 holds.
If the coefficients are time-invariant in (2), that is,
(5) dx(t) = a(x(t)) dt + b(x(t))dw(t)

then the Markov procese_x-ﬁay be describéd by a transition.operator
P:R+ xRx BR) » R+. In this case P(t,x,E) gives the probability that

x(t) € E given that x(0) = x. The sets of operators {Tt}teR+ and {Ut}teR+

(Tgf)(x) o I f(y)P(t,x,dy)
R

W@ = [ P D@
R |
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and Ut 0 U8 = U , @8 a

are in this cgse semigroups, Tt Y Ts = Tt+s

t+s
consequence of the Chapman-Komogorov relatioms. The infinitesimal generator

| A of T is defined as the limit

'rtf-f
Lg- lm ——— = Af .
 tis
' ' ' 2 o
Here Af = a(x)'%g + -% bz(x) jL%- , and the equations (3a) and (3b)
' ox

for the density function p of P are

o _ 9.

. ax
6y BEXY | Aa@peay] |, 1 22 BE0)pExy)]
A ot 3y I R ayz_\' 4

Or conciseiy, :

(6a)' 3p/dt B.Ap ' K p(0,x,y) = 6(3—y)
(6b)' p/dt = A*p  , p(0,x,9) = L.(x) .

The problem correspondiﬁg to Theorem SYabove 18 to emtablish the
existence of an invariant distribution for x. Such a distribution is an
element 1 of_PM(R) such that u = Utu for every t ;{0. It is an equivalent
problem tb look for solutions to A*u = 0. For let'ﬁlbe the dens;ty of the
invariant measure u with zespegf to Lebesque mgaaute;u(E) a_fE u(x) dx,
and let p(t,x,y) be the dehéity of P(t,x,E). Thenégain the definitipn of

an invariant distributitn is u(E) - (Utu)(E) or

-I_ u(z)dz = I'..P(t.x,E) n(dx)
E _ R _

= J’ ._ f P(t.:xsyj dy u(x) dx A
R E - o -
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= I [ [ p(t,x,y) u(x) dx ] dy
Cdg R |

or since E ¢ B(R) was arbitrary

1

u(y) = 'I p(t,x,y) u(x) dx .
4 N

Assuming the right-hand side Eo be twice differéntiable in x and once in t
uﬁder the integral sign, and assuming p as a fuﬁction-of t and y satisfies

" A*p = 3p/at, then

(3/5t - A*)u(y) = [ (3/3t - Aﬁ)p(t,x,y) u(x) dy

R
= 0,.
And so, A*u = 0 justifying the claim.

Before coﬁsidering,the invariant measure problem from this point of

view,it is appropriate to return to the transition operator and examine it

more closely. The next paragraphs follow Khas'ﬁinékii-[43l. Assuﬁe the
following: . |

(1) The process x as a solution of (5) has continuous sample pathé.

(11) The operators Tt: C(R) + C(R), or that x is a Felier Process [19].-

(111) The process x is non-degenerate, or equivaleﬁtly, P(t,x,U) >0
holds for any open set of positive Lebe;que measure. |

(iv) The process x is a strong Markov process.

(v) The.prpcgss ; is gécufrent; i;e., there exists a cbmpact subset

K of R such thit'for'every x € R, P(¢,x,K) = 1 for some t ¢ ﬁ+.

Proposition 7: [43,p. 180] The trajectories of the_ptoééss.x are every-

denée in R.

g
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. The relevant result derived from these assumptions is given in the

Theorem 8: [43,p.182] Por the recurrent, diffusion process x as a solu-
tion of (5) there exists a non—ﬁrivial; unique c-finite invariant measure

He If H(R)< =, then

I

T '
I . P(t,x,E) dt -+ u(E)/uR) .
0 B

Coﬁpare the second assertion of thié thedrém with the arguments in the
proof of Theorem 3.2.5. See Doob [14] for reélated remarks on this convergénce;
Using Doob [14; Theorem 5]}, Kﬁas'minskii is actually able to conclude that
if u(R) is finite, then P(t;x,ﬁ) + u(E) for e&gry.x € R. Piniteness of
: u.may be shown under minor additional restrictions_oh the prb;ess X.

Returning to the density equatioms, the precise.tonditions $or x to

have an invariant measure are given in

Theorem 9: [43,p;19ojv In order that x have a finite invariant measure,
it is necessary and sufficient'that Au = -i»hévé a positive sblution in.
R~ D for some bounded domain D with éﬁootﬁ boundgty aD. Moréover, in this
case, for ahy.measureable function £ |
- 1lim I p(t,s,y) £(y) dy = f £(y) u(dy)."
t»o JR : R ' ~
where 11 is the invariant measure, and p the fundamental solution of -

A*p = 3p/at.

Proved by arguments involving the first entrance times into the domain
D, Theorem 9 depends critiéaliy on the smoothness properties of 3D. This
1s of course a significant condition and in most instances a handicap.

Based on the paper [43], Wonham's paperv[7i],con£ains'éome'important
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‘sufficient conditions gugranteeing the hypothesis of Theofem 9, and thus
 recurrence and invafianoo of the solution process x. His conditions use
Lyapunov fghcﬁionala of the state:

| Let Sr dehoto the'open ball of radius r> O in Euclidean space and
assume that the function v on R satisfies the following |

(1) v is twice oontinuOUSIy differénﬁiable.

- (11) v(x) >0 forx e S. v(x) >+ ® as ¥ + o ,

Theoreﬁ 10: [71,p.200]_ If there éiists a function v, satisfying (1) and
- (11) above and suoh that Av < -1, the x, the solution of (5), has a
unique invariant distribution. |

Although the atia_lysi's of wmihaui and Khas'minskii relies almost exclus—
ively on the analytical structure of Markov p:ocesseo, it is more illuminat-
ing to outline the'proofs of Theorems 9 and 10 in the framewofk used earlier
in this chapter. The idea is simple. from any initial distribution Uy
the distributions of x(t) for t ¢ R evolve according to Ut“ Hes
where Ut &s thersemigroup defined above:

H®) = U ® = [ BB o

Cléarly, u, is linear.ond continuous on PM(R) with theftopology of weak
convergence; continuity_foliowing from the Feller property. Thus, on a
compact set contained in PM(R), U, 1s closed and has a fixéd‘point [16;p§56].
Thus, it remains to show that the distributions of x form a compact sub-

set of PM(R). It is at thisspoint that the Lyapunov functional is used,

see Elliot [22, section 4.3].~ | | |

‘Let v be a functional on R satisfying the assumptions (i) and (ii)
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above; further assume that v(0) = O, ThenElliot [22, p.39] shows that for
vy > 0 the set | |

$(viy) = {u € PM(R): fR'v(x) u(dx) < vy}
is compaqt,('in the weak topology on.PM(R)).'Ellgotfs raﬁ&atiangﬁeifbi-
lowing: |
Theorem 117 [22, p. 35] Let v satisfying (1) and (i1) above be such that
for posi.vtiv'e’cl,cz,"c3

W' W] < e @+ [x|D

-
oM
r

(11)' (Av)(x) < c, = c3v(x)
then there exists an invariant distribution for x..

Proof: Consider Ttv(x), then

t

Ttv(x) = v(x) + I TéAv(x) ds

| 0
from Dynkin's Formula ([48,p.10] or [22]). So

t - . r t .
. c3!0 :sv(x) ds + 'rtv(x) < v(x) + IO <, d.t:
from which it follows that
| . . ‘ _ e, )
Ttv(x):g v(x) exp(-c3t) + 'E;_(l - exp(-c3t)).
For any y > czlcs and u ¢ ¢(v;y) the equality

[ rweo e - [ v @
R .

2 cfeg <y .

The coméactness of @(v;f) and the continuity of Ut yield the result.
' 'QED
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It is appropriate to remark that ﬁhis technique of proving the exist-
~ ence of distributions invariant under timeeshifté is commonly used in the
ergodic theory of Markov processes per se. See for example Foguel [27]
for an interesting introduction to this subject. While less constructive
than the use of the steddy state Fékker—?lanck equation, the techniqué is .

quite similar to that uséd in the earlier sections of this chapter.
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- CHAPTER &
APPLICATIONS, CONCLUSIONS, AND FURTHER RESEARCH

4,1 A Pew Remarks on Applications:

In this éeqtion two feedback systems profitably modelled as random -
will be considered. The pﬁtpose here_is not to give a complete investi-
gation of these examples but rather to indicate treatments within the
framework established in the last chapters. |

A. The human operator:

As a first example consider the human as a feedback controller. Feed-
back systems containing humans étise:naturally in many settingsi[2],
perhaps the most familiar one in an engineering context ié as a pilot.

In the design of control meéhgnisms and instrument displays for aircfaft

it is important ﬁo have some model of the pilot as the "actuator link"
between the ipst:uments and the contrél mechanism., Beﬁausg of the highly
individual techniques of'pilots [45]) and the possibility of a large number
of"?iiots flying any pa;rficuiar aircraft, it.lis appropriate to ﬁodel the
human as cdntéining some random parameters when operating in this situation.

In conttolling'an aircraft about some nominal trajectroy, the human'méy
~be modelled as an.esséntialiy linear elgmgﬁt subje;ﬁ to random perturba-
tions in the following mannér. In feading the insttumehts errors are made,
and these errors, being'cﬁaracteristic of ipdividuglﬁ, are usually modelléd
as the_effect of additivg noise. Atteﬁpting to dedﬁce the state of the
aircraft from théée imperfect observations, the human performs a kind of
filtering operation in some optimal manner. Th#s sﬁéé is usually modelled

as operating on the noisy obéérvationvsignAvaith an optimal linear (Kalman)
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filter. The ne£t step in the control process is dpérating the control
mechanism so_aé'to correct for any perceived errorsAfroﬁ,the nominal
‘trajectory. At this stage a delay is introduced as é cbnsequence of the
neuro-motor del#ys of the human; Moreover, noise 1s usually added here to
account for the errors 1nsﬁani§ulating the éqntrols. This model of the
‘human controiler in a steady—étate cdntrol.taﬁk redﬁﬁea to tﬁe,caééade

of elements shown in Figure 1.

X + .
. (%) L + V%
. = Ao ) K Am -—.CP—-—- Ko S
. + , B T '
observation =~ filter = motor | gain
delay _ delay =~ = ‘
oft) - I m(t)
(observation noise) ' : ' (motor roisé)

Figdre 1: A model of the human controller.
Defining the Kalman filter by its impulsé response k, the input-output

equation of the model is

: t-4A _ - _ :
_ kbm(t) +k IA ol k(t-Am-s)'[x(s-Ao) + o(Son)] ds ;
y(t) = (| : (-} - ' '
. , | ot 2 AHA
kom (t) ? - t '. < AE+A° .

For' any model of the aircraft{(about the nominal operating point) anal-
ysis of feedback systems including the human opgrator model above 1is

_sttaigh:—forwatd from this point (except for the ptesence of delays) by
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familiar mgthbds.

Frequently, however, a less detailed model of the=human as a white
- noise gain is used to obtain worst case téaults in experiments involvihg
a wide range of oper#ting conditions {2]. In this case the model of

Figure 2 appiies.

———— K(s)

1inear element

N

(multiplicative
white noise)

Figure 2: A crude model of the human operator.
Here K represents the combined effects of the Ruman's filtering action
and (Padé) approximations to the delays. Thus,

t ..
k(t-s) x(s) dN(s)

y(t) = f
0

as an Ito integral,describes the transfer of observation (x) into control

action (y) by the human. Hefe k is the impuise response 6f the linear

element K; Agéin'for an app:opriate lineaf model of the aircraft in steady

state operation, analysis of the'human as a controller is s;raight;fotward

using results like Theorems 3.2.4, 3.3.4, and 3.3.5. The latter give easy

sufficient conditions in terms of the frequency'respohae of the linear

elements for boundedness of the signals in the control loop.
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In the event that the human model includes a nonlinearity satisfying
sector conditions as used in Chapter 3, perhaps reflecting thresholds of
no response [45], then analysis using Theorem 3,2;5, etc., is no more

difficult than in the linear case.

B. Analysis of round-off errors in numerical computdtions:

In the first chaﬁternﬁhe point was raised that the aCcumulation.of
" round-off errors in a numerical computation sould be considered as a
stochastic process. Though in actuality a deterministic phendmena, the
" randomization of the error evolution is warranted by the extreme com-
élexity of any nontrivial computation on a large machine. The development
of a statistical model takes thevfollowing foutg'(this'anaiyéis 1s'drawn.
from Henriéi [34],[35]). |

Most numéf;cal algorithms consist of genérating a sequence of numbers -

X 1K seens defined by the relations

x = Fn(xo""’xn—l) : ns=1,2,... .

Iﬁ'ac;ual machine computations, howéver, the élgorithm is only approximatdy
realized and machine numbers in (of finite length) are generatedvby the

approximate realizations Fn by

-~

in ﬂ Fn'(io'ocl.in-l) ) ; n = 1,.2""0 ‘ [}
, Write

xn = Fn(xo,...,xn_l) +e

and consider this as the definitiom of the local rounding error e - Thus,

en = ?n(xo,..-,xn_l) - Fn'(xo,.o-,xn_l) .
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Each local rounding error is propagated through the remainder of the com—
putation (from n on), and in this proceés its effect on the final accum-

ulated error may be amplified or diminished.'The’accﬁmulated rounding error

r, at any stage is defined as the difference between thg numerical result

and the correct theoretical result; here E =R -x .

~

'_ Clearly, knowledge of the machine approximations Pn would permit oﬁe
to determine worst case bounds for the error evolution under the unlikely
hypothesis that each local rounding error has the maximum bad effect on the
accumulated error. Such a systematic teinforcemeﬁt’of errors is uﬁlikély
in any typical computation, and the bounds obtained under this assumption
are usually unihformative. It is the need to have some“appraisal ofithe
"average" growth of round-off.etrors that motivates the statistical
" assumptions.

Therefore, assume that each e, is for-each n a random variable on some

probability space (§,7F,P) . The accumulated error evolves according to

l’.'n s en + Fn(io,.oc,gn-l) + Fn(ga"'.,in-l)
=e + Hn(ro,..,rn_l) .

The stability problem becomes the following: given the statistics of the

stochastic process { en}n€z+ describe those of the procesg {rn}n€z+

n + «», Of particular interest are bounds on themgaanaaﬁd¥vgt¢gnée06frthe
.prbcéss {r} » as these are éasily determined and indicate.the average

rate of growthvof the errors. The general conditions of section 3.1 engble
one to constrain the operaﬁor H so as to assure compactness of the dis-

tributions of {Wnr}nez* (the truncations of r) on some sequence space
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and guarantee asymptotic invariance (with n) of the statistics of r if e

is stationary. Moreover, the moment bounds determine ﬁhé asymptotig limit
distribhtion‘approximately. In certain linear integration schemes (the
operator H bééoﬁes a linear convolution) the results of section 3.2 apply
iﬁmediately. In relation to this point see [66], ﬁhere the aﬁalog ofiTheorém

3.2.4 is given for random séquences.

4.2 Conclusions and Sugggstions for Future Research:

In order to pléce the present wérk in perapectiwei1£i$sunecessaxytao
place the study of stochastic systems within the theory of dynamical sys-
tems. Although it is too earli for the latter iaek, some points are élear.
First the study of dynamical systems has.proven to be one of the most
fruitfﬁi branches of engineéting and mathematics, and for this reason any
extensions and generalizations should be pursuited for additional insight.
The admission of étpchas;ic Gétiables in optimizaﬁioﬁ problems has led to
a much better understanding of the role of information patterns in control
syétems as may bé.judged £i6m the ééveral §apeté 6n this subject-in the
Bibliography. Secondly the applicgtién of stochastic systemb as models
for complex physical system# would seem tq’be broﬁising; the demonstrated
sugéeSB of a few definitive case studies wculd'strengtheﬁ thiélassertibn.

0f a more technicél natﬁre is the observation that the properties of
causél, dynam;éal systems afe deéply rélated‘to tﬁése of Markov proéesSes.
A general ekaminationlof the relationship between causality énd the Markov
property beyond the qbvious-would seem valuable.YCertainly the description
of syéteﬁs by stochastiq‘differéntial equations interpeftéd in the analy-

tic;l'theory of Markov process has proﬁided a rich class of systems
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described by partial difféfential equations. Viewed from the field of

vhat has come'tp'be called distributed pazameter systems, this aspect of
stochastic systems permits an easy interpertation of the properties of

the distribated solution as a probability density function. Moreover, the
additional intérpertation étovided by the differentialfequation for the
sample trajectories of the pfocess é#nnot be but'ah:aaagt_in the énalysis
of the partial differential equation. This telationahip between distribute&
gystems and_Hﬁrkovian aystéms is largely unexploited as such.

As thé remarks above reflect some of the tentative aaspécts of the
étochastic.systems theory, so must the preéent work be reggrded as ﬁfe-
liminary in nature. For as an inveétigation“of the problem ofide;ermining
thg transformations of probability distributions b& dyn#mical (feedback)
systems, ité provisional‘éspgcts are apparent. Perhaps the mpét s;gnifi-
cant drawback is the non-constructive nature of the aﬁalyéts.<1t-wpdid be
an important.extenéion of this wvrk to render the process of analysis
constructive, though this is likely to bé»eqpivalgnt to sblving the implicit
feedback_equations'and'hence impossible in géneral.'

vHowever, as an alternative approach to the an#lysis of the asymptotic
properties of stochastic Syétems, this work has succgeded in making the
Prohorov theory directly~app11cable to this kind éf analysis. In this con-
text the work is antedatgd by that of Ito and Nisioﬁ [41] and Flemiﬁgland
.Nisio {26], though the explicit connection of deterministic operator
.stability theory and the Prohorov theory, using fhé results of‘Topéde,‘
appears to be novel. ?inally, the specific results of sections 3.2 and-3.3

are interesting as generalizations of deterministic counterparts-the
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Nyquist and Circle Theorems. Examined along with papersllike:{Zl§, [47],
[(73], [46], and {66], these theorems should increase the‘understanding of
stochéstic systems containing linear elements.

Further comments on this work may be usefully made by suggesting a

few extensions and modifications. In addition to the general statements

. above,cpnsidef'then the followihg precise problems.

A. Stability conditions based on empirical distributions:

Of course one of the primary objections to this work is its a priori
assumption 6f given distributions fof the perturbation inputs ahd random
parameters. In any practical experiment these are éeldqm given and usqally
difficult to determine.experimentally, though appropriate statistical
methods are available. About the most complg:e characterization one céuld
reasonably hope for'is‘a number of empirical distributions for the uncer-
tainties derived from samples of the processes. It would be,therefdre,very
useful to determine conditions based on empirical distributions of the
inputs and butputs that assure ;he asymptotic regularity of the 6utputs
in the sense used previously. These conditions would have to apply for a -
class of distributions»whicﬁ could give rise to those observed empiricaily.
The Prohorov theory has potential applications here especially on the space
D of piecewise continﬁéuélfhnctions,'see sbme comments to this effect in [7].
The definitions of stochastic aystems‘givén in aection 3.1 afe designed to
permit a number of possible’distributions for the gncertainties freseﬁt,

and may prove useful in the early stages of work on this problem.

B. Stochastic systems Withgggnlinear state spaces:
Consider the problem of designing a feedback control law to accuratély

orient a rigid body (satellite) in orbit. The petturb#tions are essentially
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atochastic in nature, arisin;:;;sitioh sensor errors and natural pheno~-
mena. A8 is well known the attitude of a:wrigid body in a fixed coordinate
system is describéd by a set of 3 x 3 orthogpnal matrices, a set not
closed under addition. Hence, the control proble@ must be analyzed in a
éétting where ﬁhe state space of the sysﬁeﬂ is a noniinear manifold.

Note that the analysis of round-off erfbra may be coﬁsidéred ih thié »A
framework,las the local errors are pbnfined to a fixed interval and may
be considered as randOm.variables on a circle, see [23,p.61].

One of the reasons for seeking problems»with nonlinear state spaces
is thé good.possibility of obtaining explicit analy;ical gélutions to
the diffusion gquationé (for the probability deﬁSity functions;of the state).
There are rather feﬁ diffusion equations, aside.ffom the Guass-Markov case,
that admit an éxplicit éqlution in the usual vector space setting. For
cettain speciél manifdl&s explicit solutions to Laplace'q eqpat;on are
well known and may be used uo.describe Brownian mbtions on these manifolds
{18]. Other referenées are Elliot [22], McKean [50] and the feferencgs
therein. Research on this problem should provide intérescing.énhéncements

of the work in Brockett [9].

- Ce Passive stochastic systems:

Of a rather more technical nature is the problem of describing the
analog of passivity in a stochastic setting. Recall that a deterministic

operator G orn the Hilbegt space (H,<+,*> ) is said to be passive if

Re<x,Gx> > 0 for every x € H.

‘This 1is equiﬁalent to the physical notion of a system wﬁich'élways diss-

pates energy({64].
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Let LZ(R+) denote the spacé of square integrable, real-valued functions
on R+,‘ and ?.(Q:Lz). be the set of Lz-fvalued random variables. Then clearly

the set (i(ﬂ;l}z),«,»), where for x,y"é J((SZ;LZ)- c F(Q;'LZIV)
<x,y> = E {r Ax(f,w)y(t,w) dt)}!
. 70

and <x,'x>‘ év".’, for every x, is a ‘H.ilbert spécé. Mofedvvér.,' the inequality
<x,Gx> > 0 makes perfect mathematical sense for some (random) ehdomorphism
G onaC(Q;Lz), and it is easy to give ‘themeitiv'e Op'erhtor stability theoren
[74,p.235] of the deterministic tﬁeory in this lsetting. Physical inter-
pertatibns of the resul_t: are less easy, however, and apparently some
rnotion of random spéct’ra must be de‘velé‘ped.' Useful i&eas Qre likely to be

found in statistical mechanics [62].
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